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Abstract

Data imbalance, also known as the long-tail distribution of
data, is an important challenge for data-driven models. In
the Word Sense Disambiguation (WSD) task, the long-tail
phenomenon of word sense distribution is more common,
making it difficult to effectively represent and identify Long-
Tail Senses (LTSs). Therefore exploring representation meth-
ods that do not rely heavily on the training sample size is
an important way to combat LTSs. Considering that many
new states, namely superposition states, can be constructed
from several known states in quantum mechanics, superpo-
sition states provide the possibility to obtain more accurate
representations from inferior representations learned from a
small sample size. Inspired by quantum superposition states,
a representation method in Hilbert space is proposed to re-
duce the dependence on large sample sizes and thus combat
LTSs. We theoretically prove the correctness of the method,
and verify its effectiveness under the standard WSD evalua-
tion framework and obtain state-of-the-art performance. Fur-
thermore, we also test on the constructed LTS and the latest
cross-lingual datasets, and achieve promising results.

Introduction
Data imbalance is very common in the field of data min-
ing (Abd Elrahman and Abraham 2013). For real data, the
sample sizes of different categories are generally not uni-
form distributions, but unbalanced, such as the most com-
mon long-tailed distribution. Large datasets often exhibit
such a long tail phenomenon (Yang and Xu 2020). For data-
driven models, data imbalance directly leads to difficulty
in obtaining effective representation and recognition for tail
categories (Ntoutsi, Fafalios, and Gadiraju 2020).

Word Sense Disambiguation (WSD) is to determine the
word sense of the target word according to the given con-
text, which belongs to the basic research topic in natural
language processing (Bevilacqua et al. 2021; Navigli 2009).
But for high-level tasks based on natural language under-
standing, an accurate identification of word senses at the lex-
ical level can effectively improve the overall performance.
Due to the long-tail phenomenon of word sense distribution
in linguistics, the Long-Tailed Senses (LTSs) lack sufficient
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training samples to complete effective feature representa-
tion, and then obtain correct recognition (Aliwy and Taher
2019; Bevilacqua et al. 2021).

Researchers employ data augmentation methods, such as
oversampling (Fujii et al. 1998), data synthesis (Bolshina
and Loukachevitch 2020), multilingualism (Scarlini, Pasini,
and Navigli 2020a), etc., to improve the disadvantaged po-
sition of LTSs. These methods are not universally effective
and destroy the statistical laws inherent in the data. Meth-
ods of changing learning strategies have also been exten-
sively studied, such as transfer learning (Kohli 2021), meta-
learning (Holla et al. 2020), few-shot learning (Kumar et al.
2019), etc.

Kumar et al. (Kumar et al. 2019) adjusted the discrete la-
bel space often used in the WSD task into a continuous sense
embedding space, resulting in state-of-the-art performance
in experiments. The success of this scheme is not only be-
cause the sense embeddings replace the original labels, but
also more importantly because the continuous space con-
straint helps to obtain correct sense representations. Com-
pared with the Euclidean space without constraints, contin-
uous space constraints can compress the range of parameter
values and reduce the number of parameters.

Considering that quantum states are constructed in Hilbert
space, it naturally has the advantage of continuous space
constraints. In addition, considering that many new quantum
states, that is, superposition states (Nielsen and Chuang
2002), can be constructed from several known quantum
states in quantum mechanics, the concept of superposition
states provides the possibility to obtain more accurate repre-
sentations from inferior representations learned from small
sample sizes. In this article, we leverage quantum states to
describe representations learned from insufficient training
samples, and further obtain more accurate representations
in their quantum state form by constructing superposition
states.

In quantum mechanics, quantum states, including super-
position states, are points on the sphere of Hilbert space (the
special case of entangled states is not discussed here), so
the representations described by quantum states have the ad-
vantage of continuous space constraints. Furthermore, learn-
ing the representations does not require adding additional
parameters. Because building a superposition state requires
an additional parameter, the continuous space constraint can
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save a parameter. In general, the quantum-inspired represen-
tation method provides the ability to obtain more accurate
representations under continuous space constraints without
increasing the amount of parameters. See Theoretical Anal-
ysis and Methodology section for theoretical proofs and spe-
cific implementation details respectively.

Our contributions can be summarized as follows:

• Propose a method to obtain more accurate representa-
tions in the case of insufficient training samples, inspired
by quantum superposition states, which can alleviate the
dependence of data-driven models on large sample sizes;

• Theoretically prove that the quantum-inspired represen-
tation method is better than the classical one;

• Implement experiments under the standard evaluation
framework for the WSD task and obtain state-of-the-art
performance; Execute experiments under the constructed
long-tail sense and the latest cross-lingual datasets and
also achieve promising results.

Related Work
Long-tail Word Sense Disambiguation
With the continuous optimization and improvement of in-
telligent algorithms, high-frequency word senses can be ac-
curately identified. At this stage, the focus of the WSD
community is gradually converging on long-tail word sense
disambiguation (Bevilacqua et al. 2021; Aliwy and Taher
2019).

Blevins et al. (Blevins and Zettlemoyer 2020) first real-
ized that the focus of the current WSD task should be on
LTSs, and proposed joint training of dual encoders to en-
hance the representation of word sense with the knowledge
of training samples. Kumar et al. (Kumar et al. 2019) paid
attention to the representation and recognition of zero-shot
word sense disambiguation, and proposed to use continu-
ous word sense embedding space to replace discrete label
space to deal with unseen word senses. In addition, there
are Refs. (Wang and Wang 2021; Wang, Zhang, and Wang
2021a; Berend 2020; Zhang et al. 2022a).

The representation method proposed in this article is spe-
cially designed for the scarcity of training samples of LTSs,
and also adopts the characteristics of continuous space,
namely Hilbert space.

Quantum-inspired Models for WSD
Quantum theory is believed to be able to reveal human cog-
nitive behavior (Busemeyer and Bruza 2012; Bruza, Wang,
and Busemeyer 2015), and the mathematical principles of
quantum mechanics (namely, quantum probability theory)
have been extensively studied because of their superior-
ity (Li et al. 2018; Liu, Hou, and Song 2021; Zhang et al.
2020, 2022b,c).

On the WSD task, Tamburini (Tamburini 2019) adopted
quantum probability theory to calculate the similarity be-
tween the complex word or sentence embeddings. Although
the model is relatively simple, it has the advantage that it
does not take a lot of time during the training phase. In addi-
tion, Kumar et al. (Kumar et al. 2019) adjusted the discrete

label space into a continuous sense embedding space, result-
ing in state-of-the-art performance in the experiments. Al-
though this work does not mention quantum probability the-
ory, the pure state in quantum mechanics is also established
in a continuous space, indicating that continuous space con-
straints are indeed beneficial to the representation and recog-
nition of word senses.

Inspired by the above work, this article leverages the
mathematical form of quantum superposition state to obtain
an optimal representation under the premise of suboptimal
representation, that is, to search for a better representation
based on the original representation.

Theoretical Analysis
Preliminaries
This section introduces the background knowledge of Quan-
tum Probability Theory (QPT) necessary to understand the-
oretical proof and model design. Note that QPT is a more
general probability theory and is perfectly compatible with
Classical Probability Theory (CPT), so it can be used as a
modeling tool in information systems. See Ref. (Nielsen and
Chuang 2002) for more details.

Quantum Events: QPT assigns probabilities to events
like CPT, but it defines events in the subspace of the multi-
dimensional complex Hilbert space H ∈ Cn, unlike CPT
that defines events as sets.

Quantum States: In QPT, the quantum system (i.e.,
quantum state) is defined as a complex vector |ψ〉 ∈ H with
‖|ψ〉‖ = 1 using the Dirac1 notation. A more general for-
malization can be defined as

|ψ〉 = φ1|e1〉+ φ2|e2〉+ ...+ φi|ei〉+ ... (1)

where (φ1)2 +(φ2)2 + ...+(φi)
2 + ... = 1, φi is a complex

number called the probability amplitude, φi = 〈ei|ψ〉, and
|ei〉 is the basis of the space H. This state is called a super-
position state, and its basis vectors are the basic states. It
is also possible to construct a superposition state from other
superposition states,

|ψ〉 = φ1|ψ1〉+ φ2|ψ2〉+ ...+ φi|ψi〉+ .... (2)

Quantum Measurements: There is more than one type
of quantum measurement in quantum mechanics, such as
general measurement, projection measurement and POVM
measurement (Nielsen and Chuang 2002). The textbook
mainly introduces projection measurement, while the field
of quantum information processing mostly uses general
measurement.

General measurement is described by a set of measure-
ment operators {Mm}, where m refers to the possible re-
sult. For example, the status of the system is |ψ〉, and the
probability of the measured result m is

p(m) = p(m;Mm) = 〈ψ|M†
mMm|ψ〉. (3)

1In Dirac notation, |·〉 is a column vector (or called ket), while
〈·| is a row vector (or called bra). Using these symbols, the inner
product can be expressed as 〈x|y〉 and the outer product as |x〉〈y|.
Also 〈x| = |x〉†, where “†” marks the conjugate transpose opera-
tion on vectors or matrices.
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Figure 1: Illustration of the superposition state on the Bloch
sphere. (1) refers to high-dimensional space and (2) to plane.

After the measurement, the status of the system changes to

|ψ′〉 =
Mm|ψ〉√

〈ψ|M†
mMm|ψ〉

. (4)

Note that {Mm} needs to satisfy the completeness,∑
mM

†
mMm = I , which reveals the fact that the sum of

the probabilities is 1,∑
m

p(m) =
∑
m

〈ψ|M†
mMm|ψ〉 = 1. (5)

Theoretical Analysis for Quantum-inspired
Representation
When the word or text vector ψ obtained with an insufficient
training sample size is represented by the quantum state |ψ〉,
we can obtain a more correct representation through the su-
perposition state constructed by |ψ〉 and its anti-state |ψ〉
(the method of obtaining |ψ〉 is given in Methodology sec-
tion). The formal definition and proof of this conclusion are
as follows.
Conclusion 1. Assuming that |φ〉 is the correct state and |ψ〉
is obtained when the training sample size is insufficient, the
superposition state

|Ψ〉 = cos(θ)|ψ〉+ sin(θ)|ψ〉 (6)

can be better than |ψ〉, that is, there is

p(|ψ〉; |φ〉〈φ|) ≤ p(|Ψ〉; |φ〉〈φ|) ≤ 1 (7)

where |φ〉〈φ| represents a measurement operator, Mφ =
|φ〉〈φ|, and this probability operation can be defined as

p(|·〉;Mφ) = 〈·|M†
φMφ|·〉 = 〈·|φ〉〈φ|·〉 = (〈φ|·〉)2 (8)

by general measurement theory.

Proof. In the high-dimensional Hilbert space, the superpo-
sition states composed of |ψ〉 and its anti-state |ψ〉 can form
a plane, which is a great circle under the Bloch sphere de-
scription method.

• When |φ〉 is not on the plane formed by the superpo-
sition states, as shown in Fig. 1 (1), some superposi-
tion states on the plane are closer to |φ〉 than |ψ〉, i.e.,
p(|ψ〉;Mφ) ≤ p(|Ψ〉;Mφ).

• When |φ〉 is on the plane formed by superposition states,
as shown in Fig. 1 (2), |φ〉 can be characterized by one
of the superposition states, i.e., p(|Ψ〉;Mφ) = 1, and in
other cases, it is p(|Ψ〉;Mφ) < 1.

Note that the proof shows that some better representations
can be obtained based on superposition states, but it does
not deny that there are worse cases. However, in specific ap-
plications, the algorithm can finally obtain a more correct
representation described by the superposition state through
optimization learning.

Moreover, it needs to be emphasized that this article uses
the method of increasing the system dimension to replace the
complex number representation of the quantum system, and
their functions are equivalent in the form of a single quan-
tum system (Hardy 2001; Janotta and Hinrichsen 2014).

Methodology
This section is divided into four parts: a formal descrip-
tion of the WSD task is given; the quantum-inspired rep-
resentation method is formalized; the WSD model under
the Quantum-inspired Representation (called QR-WSD) is
constructed; the loss function and optimization method are
given.

Word Sense Disambiguation
WSD belongs to a standard classification task, and its core
task is to learn a mapping model from the target word to
word senses. When using pre-trained language models to
vectorize the target word and word senses, the core task is
to match the most similar word sense embeddings embisense
for the target word embedding embtarget,

Min{..., d(embtarget, emb
i
sense), ...} (9)

where d(·) represents a distance metric function.

Quantum-inspired Representation
In some tasks of Natural Language Processing (NLP), texts
or words are vectorized, such as text or word embedding
V = [..., vi, ...], and on this basis, we can construct quantum
systems (i.e., quantum states) by imposing the constraint

C(V ) = |V 〉 =
1√∑
i v

2
i

V (10)

with ‖|V 〉‖ = 1. By the constraint C, all vectors can be
represented as quantum systems. The system generated by
this method does not conflict with the system constructed
from the basis vectors, that is, it can be decomposed into a
composite form of the basis vectors, as shown in Eq. (1).
Note that quantum states of single systems, i.e., points
on the sphere of Hilbert space, can be obtained by this
method (Nielsen and Chuang 2002).

Based on the above quantum system, the superposition
state needed in this article can be constructed,

|V〉 = cos(θ)|V 〉+ sin(θ)|V 〉 (11)
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where θ ∈ R and |V 〉 = X|V 〉. X is the NOT gate of quan-
tum mechanics, and its high-dimensional form is shown as

X =

 1

· · ·

1

 . (12)

For the parameter θ in Eq. (11), we can obtain it in many
ways in practice, such as setting it as an independent pa-
rameter, or setting it as a non-independent parameter learned
based on other features. We here obtain θ from V through a
linear layer of the neural network,

L(V ) = θ ∈ R. (13)

Therefore, the mapping from word or text vectors to super-
position states can be formalized as

F(V ) = cos(L(V))C(V)+sin(L(V))XC(V) = |V〉. (14)

At this point, we can use quantum measurement theory to
calculate the similarity between the representation obtained
from the superposition state and the representation of the
label. Since the output of the quantum measurement is the
probability, it can be directly used as the score of the corre-
sponding label. Here we define the correct state |φ〉 (which
can be the vectorized form of the label in specific applica-
tions) as a measurement operator Mφ = |φ〉〈φ|, and the
probability of |V〉 can be obtained from the general mea-
surement theory,

p(|V〉;Mφ)=〈V|M†
φMφ|V〉=(〈φ|V〉)2. (15)

Architecture of QR-WSD
Based on the quantum-inspired representation method, a
WSD model is constructed, called QR-WSD, and its archi-
tecture is shown in Fig. 2.

The overall structure of the model can be divided into two
parts, namely the classical processing method part and the
quantum processing method part. Previous work (Kumar
et al. 2019; Blevins and Zettlemoyer 2020) has verified that
the classic method can effectively deal with head senses (that
is, most frequent senses). This paper will integrate the quan-
tum method, which is good at processing tail senses, to make
up for the shortcomings of previous work. Both quantum
and classical processing methods rely on the embeddings ex-
tracted by BERT (Devlin et al. 2019) from the target word,
glosses and example sentences, where glosses and example
sentences come from WordNet (Miller 1998). It should be
emphasized that although this article uses the glosses and
example sentences, the difference is that we only use them
for training label vectors instead of directly using them as
training data. In the end, these two methods together deter-
mine the final output of the model.

Classical Processing Method: The classical processing
method part uses the embeddings obtained by the two
BERTs as input. One BERT is used to extract the target word
and example sentence embeddings (in Fig. 2, for the conve-
nience of understanding, we repeat the BERT), and the other
BERT to extract gloss embeddings. The generation process
of the embeddings is described below, and they are also ap-
plicable to the quantum processing method part.

• Target word embedding: The training set is used as the
input of BERT to obtain the embedding of the target
word. The text is processed following the unified regu-
lations of BERT, such as adding [CLS] and [SEP ] marks
to the beginning and end of the text respectively.

• Gloss embeddings: Gloss texts in WordNet are used to
extract word sense embeddings, that is, the vector form
of labels. The processing method of these texts is also in
accordance with the unified regulations of BERT. Since
the entire text needs to be represented, the output vector
of [CLS] is used to represent the entire text according to
the convention.

• Example sentence embeddings: The example sentences
in WordNet are used to extract the word sense embed-
dings, which are another form of word sense definitions.
Gloss texts are a conceptual formal description of sense,
while example sentences are a description of its applica-
ble scenario. They complement each other, but each has
its own focus. In order to extract the scenario information
of the target word in the example sentence, we use the
[MASK] mark to cover the target word. The vector cor-
responding to [MASK] in the example sentence is used
as the embedding of the example sentence.

At this point, the similarity between the target word
Wtarget and each sense Si can be calculated, where i ∈
{1, ..., |S|} is the index of the list of candidate senses. The
list of senses is represented by glosses Sigloss and example
sentences Siexam. The score of each sense of the target word
can be calculated:

Scoreigloss = VWtarget � VSi
gloss

(16)

Scoreiexam = VWtarget
� VSi

exam
(17)

where V represents the corresponding vectorization (i.e.,
embedding), and � represents the inner product operation.

Quantum Processing Method: Under the quantum pro-
cessing method part, gloss embeddings VSi

gloss
and example

sentence embeddings VSi
exam

are constructed as superposi-
tion states,

|VSi
gloss
〉 = F(VSi

gloss
), (18)

|VSi
exam
〉 = F(VSi

exam
), (19)

and the target word embedding VWtarget as a measurement
operator,

MWtarget
= |Wtarget〉〈Wtarget| (20)

= C(VWtarget
)(C(VWtarget

))†. (21)

At this point, the score of each sense of the target word
can be calculated, i.e., Eq. (15),

Q-Scoreigloss = p(|VSi
gloss
〉;MWtarget

), (22)

Q-Scoreiexam = p(|VSi
exam
〉;MWtarget

). (23)

Combined with the scores obtained by the classic method,
they are collectively used as the parameters of the loss func-
tion of QR-WSD.
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Score of Sense Labels

Quantum Measurement

Quantum processing method
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Figure 2: Illustration of model structure. The model consists of two parts, quantum part and classical part. The figure shows
three BERTs, but in practice, the BERT of the training target word and the BERT of the training examples are combined into
one. The notation � represents the inner product operation. The circled M stands for quantum measurement.

Model Training
We employ a cross-entropy loss on the scores of the candi-
date senses of the target word to train QR-WSD,

Scorei =Scoreigloss + Scoreiexam (24)

+Q-Scoreigloss +Q-Scoreiexam.

The loss function is

Loss(Score, index) (25)

= − log

(
exp(Score[index])∑
i=1 exp(Score[i])

)
(26)

= −Score[index] + log
∑
i=1

exp(Score[i]) (27)

where index is the index of the list of the candidate senses.
QR-WSD employs the Adam optimizer (Kingma and Ba

2015) to update the parameters, and the specific settings of
the optimizer will be given in the experimental section.

Experiments
Datasets and Model Settings
Datasets: To evaluate the effectiveness of QR-WSD, we
carried out experiments under two evaluation settings,
namely the standardized evaluation setting and the en-
hanced evaluation setting. The standardized setting in-
cludes only SemCor2 in the training set; the enhanced setting

2http://lcl.uniroma1.it/wsdeval/training-data

includes SemCor and WNGT3 in the training set. Both set-
tings use the same development set and test sets. SemEval-
07 (SE7; Pradhan et al. (2007)), following convention (Ku-
mar et al. 2019; Blevins and Zettlemoyer 2020), is regarded
as the development set. Senseval-2 (SE2; Edmonds and Cot-
ton (2001)), Senseval-3 (SE3; Snyder and Palmer (2004)),
SemEval-13 (SE13; Navigli, Jurgens, and Vannella (2013)),
SemEval-15 (SE15; Moro and Navigli (2015)) and their
concatenation (ALL) are designated as the test sets.

In addition, it needs to be explained that the candidate list
of the senses of the target word is all the word senses of
WordNet 3.0. Evaluation metrics and other unlisted infor-
mation are set according to the WSD evaluation framework
proposed by Navigli et al. (Navigli, Camacho-Collados, and
Raganato 2017).

Model Settings: The computing platform of the program
is Ubuntu 18.04, which is equipped with two Tesla P40
GPUs. The program is developed based on the Pytorch
1.8 framework and written in Python 3.6. Moreover, Word-
Net 3.0 is provided by NLTK 3.5, and bert-base-uncased
and bert-large-uncased are provided by Transformers 4.5.
The learning rate, epoch and batch size of the model are
{1e-5, 5e-6}, 20 and 4 respectively. Other hyperparameters
not listed will be given in the published code.

Baselines
According to the traditional comparison scheme, we choose
two versions of BERT (namely BERT-base and BERT-large)

3https://wordnetcode.princeton.edu/glosstag.shtml
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as the encoder to build our model (called QR-WSDbase and
QR-WSDlarge) to compete with the baseline models. The
comparison models are divided into models under the stan-
dardized setting and under the enhanced setting.

Under the Standardized Setting: Our model is compared
with EWISE (Kumar et al. 2019), LMMS (Loureiro and
Jorge 2019), SREF (Wang and Wang 2020), ARES (Scar-
lini, Pasini, and Navigli 2020b), BEM (Blevins and Zettle-
moyer 2020), EWISER (Bevilacqua and Navigli 2020), Syn-
tagRank (Scozzafava et al. 2020), COF (Wang, Zhang, and
Wang 2021b), ESR (Song et al. 2021), Z-Reweighting (Su
et al. 2022), and QWSD (Tamburini 2019). Their experi-
mental results come from the values published in the original
paper.

Under the Enhanced Setting: We choose the three
most representative models as the baselines, they are
SparseLMMS (Berend 2020), EWISER (Bevilacqua and
Navigli 2020) and ESR (Song et al. 2021). Their experi-
mental results also come from the values published in the
original paper.

Results and Analysis
Under the Standardized Setting: The experimental re-
sults under the standardized evaluation setting are shown
in the first block of Tab. 1. From the overall performance
point of view, our model is superior to the baseline models in
multiple test sets. Compared with QWSD (Tamburini 2019),
which is a quantum-inspired model, our model is far supe-
rior to the performance of QWSD. A notable reason is that
QWSD does not use learnable embeddings, and we choose
the current mainstream pre-training language model. Com-
pared with EWISE (Kumar et al. 2019), which is a model in
a continuous sense space, our model also performs outstand-
ingly. The reason is that our model not only uses continu-
ous space to constrain embeddings, but also can find better
representations through the quantum-inspired representation
method.

In terms of overall performance, our results are already
in a high position, but still cannot compete with the excel-
lent performance of BEM (Blevins and Zettlemoyer 2020)
on multiple test sets, such as Adj. and Adv.. By analyzing
the proportion of head and tail senses in the datasets, it is
found that head senses in these datasets have a higher pro-
portion, which does not give full play to the advantages of
the quantum-inspired representation.

Under the Enhanced Setting: The experimental results
under the enhanced evaluation setting are shown in the sec-
ond block of Tab. 1. From the experimental results, in addi-
tion to the poor performance on the test set Adj. and Adv.,
our model is better than the comparison models under other
test sets. By comparing QR-WSDbase and QR-WSDlarge, we
find that based on a more powerful pre-training model will
significantly improve the performance.

Ablation Study under MFSs and LTSs
For a more detailed analysis of the contribution of the
quantum-inspired representation to the model, we perform

Figure 3: Experimental results of XLMR-Base (which re-
sults from data published by the evaluation framework), QR-
WSD+, and QR-WSD– under the cross-lingual WSD evalu-
ation framework.

ablation experiments.
In terms of models, we chose the model with the quan-

tum processing method removed as the experimental group,
called QR-WSD–, and the original model as the control
group, called QR-WSD+. In terms of datasets, the first set
of experiments employs the original training set (i.e., Sem-
Cor) and test sets; the second set of experiments constructs
the Most Frequent Sense (MFS) training set and test sets by
selecting the head senses in the original training set and test
sets respectively; the third set of experiments constructs the
Long Tail Sense (LTS) training set and test sets by select-
ing the tail senses in the original training set and test sets
respectively. In the implementation process, we classify the
senses that appear more than 3 times in the dataset as MFSs,
and vice versa as LTSs. Other settings are the same as in the
main experiment.

The experimental results are shown in Tab. 2. Because the
datasets used in the first set of experiments are the original
data, the results show the performance of the models under
the real data. From these results, it can be seen that the quan-
tum representation method has advantages under real data,
indicating that the quantum representation has the ability to
deal with the head senses and the tail senses at the same
time.

Under the MFS datasets, the model with quantum repre-
sentation does not have a significant advantage. But this re-
sult is in line with reality, because when there are only head
senses, the classical method can effectively deal with them,
and the quantum method is difficult to play its advantages.

Under the LTS datasets, QR-WSD+ is better than QR-
WSD–. The reason for presenting this result is that the clas-
sical method is not suitable for small sample tasks, while the
advantages of the quantum method can be exerted. However,
from the overall performance of the experimental results, the
quantum representation method is also affected by the num-
ber of samples.

Experiments under Cross-Lingual Datasets
To evaluate the robustness of the model and the applica-
bility of the quantum-inspired representation method, we
conduct experiments on the latest cross-lingual evaluation
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Models Dev set Test sets Concatenation of all test sets
SE7 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

Training data: SemCor
EWISE (ACL 2019) 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8
LMMS (ACL 2019) 68.1 76.3 75.6 75.1 77.0 - - - - 75.4
SREF (EMNLP 2020) 72.1 78.6 76.6 78.0 80.5 80.6 66.5 82.6 84.4 77.8
ARES (EMNLP 2020b) 71.0 78.0 77.1 77.3 83.2 80.6 68.3 80.5 83.5 77.9
BEM (ACL 2020) 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
EWISER (ACL 2020) 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3
SyntagRank (ACL 2020) 59.3 71.6 72.0 72.2 75.8 - - - - 71.2
COF (EMNLP 2021b) 69.2 76.0 74.2 78.2 80.9 80.6 61.4 80.5 81.8 76.3
ESR (EMNLP 2021) 75.4 80.6 78.2 79.8 82.8 82.5 69.5 82.5 87.3 79.8
Z-Reweighting (ACL 2022) 71.9 79.6 76.5 78.9 82.5 – – – – 78.6
Quantum-inspired models
QWSD (RANLP 2019) - 70.5 69.8 69.8 73.4 73.6 54.4 77.0 80.6 70.6
QR-WSDbase 74.5 80.6 79.1 80.0 84.7 83.7 71.4 82.8 86.7 80.5
QR-WSDlarge 75.4 81.8 80.2 81.1 85.1 84.9 72.1 84.4 88.0 81.7
Training data: SemCor + WNGT
SparseLMMS (EMNLP 2020) 73.0 79.6 77.3 79.4 81.3 - - - - 78.8
EWISER (ACL 2020) 75.2 80.8 79.0 80.7 81.8 81.7 66.3 81.2 85.8 80.1
ESR (EMNLP 2021) 77.4 81.4 78.0 81.5 83.9 83.1 71.1 83.6 87.5 80.7
QR-WSDbase 78.1 81.5 79.0 82.0 84.4 83.1 71.2 80.9 84.1 81.0
QR-WSDlarge 78.8 82.4 81.0 83.4 85.6 84.0 73.0 84.7 87.0 82.1

Table 1: F1-score (%) on the English all-words WSD task. The comparison models are divided into two groups: those under the
standardized evaluation setting (i.e., using only SemCor) and those under the enhanced evaluation setting (i.e., using SemCor
and WNGT). SOTA performance is bold compared to QR-WSDbase and underlined compared to QR-WSDlarge.

Test sets
SE2 SE3 SE13 SE15 ALL

Dataset: SemCor
QR-WSD+ 80.6 79.1 80.0 84.7 80.5
QR-WSD– 77.7 75.3 76.1 82.0 77.1
Dataset: MFS
QR-WSD+ 92.7 89.3 92.0 95.8 92.4
QR-WSD– 93.1 89.0 91.7 95.8 92.2
Dataset: LTS
QR-WSD+ 63.3 67.6 71.6 71.5 70.7
QR-WSD– 57.1 64.4 63.2 67.7 66.8

Table 2: The experimental results of ablation experiments
under the original, MFS and LTS datasets.

framework proposed by Pasini et al. (Pasini, Raganato, and
Navigli 2021).

To clearly demonstrate the effectiveness of the quantum-
inspired representation method, we still use the settings of
the models in the ablation experiments, namely QR-WSD+

and QR-WSD–. The encoders of the model use bert-base-
multilingual-cased. Furthermore, we adopt the model em-
ployed in the evaluation framework as the baseline model,
XLMR-Base (Conneau et al. 2020), and the experimental
results are also derived from the results published in the pa-
per. Note that since the cross-lingual datasets are constructed
based on BabelNet, the glosses and example sentences in
this section are from BabelNet. Moreover, since most small
languages in BabelNet use definitions in English, we directly
use glosses and example sentences in English to provide a

candidate list of senses.
The experimental results are shown in Fig. 3. Com-

paring QR-WSD+ with XLMR-Base, QR-WSD+ is better
than XLMR-Base on multiple datasets, which shows that
our model has a certain robustness, and that the quantum-
inspired representation method has a wide range of applica-
bility. Comparing QR-WSD+ with QR-WSD–, QR-WSD+ is
far superior to QR-WSD–, which shows that quantum repre-
sentation is helpful for the representation and identification
of long-tail senses.

Conclusions
Inspired by the quantum superposition state, this article pro-
poses a novel quantum-inspired representation method. This
method attempts to obtain a relatively correct representation
for long-tail senses with only a small sample size. Moreover,
a WSD model is constructed based on the proposed repre-
sentation to verify the effectiveness in specific applications.
The experimental results show that the model is better than
the baseline models and achieves comparable performance.
In the constructed long-tail sense dataset and the recently
proposed cross-lingual datasets, the quantum-inspired rep-
resentation shows advantages over the traditional methods,
indicating that the representation has a certain potential for
solving the long-tail phenomenon of data distribution.

The significance of this article is to propose an effective
representation method inspired by quantum mechanics and
to explore new ways to solve the data imbalance. In future
work, we will further study the application of multiple quan-
tum systems in few-shot tasks, and explore the potential of
quantum mechanics in traditional tasks.
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