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Abstract

Word Sense Disambiguation (WSD) aims to determine the
meaning of the target word according to the given context.
Currently, a single representation enhanced by glosses from
different dictionaries or languages is used to characterize
each word sense. By analyzing the similarity between glosses
of the same word sense, we find semantic biases among
them, revealing that the glosses have their own descriptive
perspectives. Therefore, the traditional approach of integrat-
ing all glosses by a single representation results in failing
to present the unique semantics revealed by the individual
glosses. In this paper, a quantum superposition state is em-
ployed to formalize the representations of multiple glosses
of the same word sense to reveal their distributions. Further-
more, the quantum interference model is leveraged to calcu-
late the probability that the target word belongs to this su-
perposition state. The advantage is that the interference term
can be regarded as a confidence level to guide word sense
recognition. Finally, experiments are performed under stan-
dard WSD evaluation framework and the latest cross-lingual
datasets, and the results verify the effectiveness of our model.

Introduction
Word Sense Disambiguation (WSD) aims to determine the
word sense of target words according to a given specific con-
text (Bevilacqua et al. 2021; Navigli 2009; Edmonds and
Agirre 2006). WSD is a fundamental research topic in the
field of Natural Language Processing (NLP), and it has a
profound impact on subsequent high-level tasks, such as in-
formation retrieval (Zhong and Ng 2012) and machine trans-
lation (Parameswarappa 2011).

Accurate and easy-to-distinguish word sense repre-
sentations can improve the performance of WSD sys-
tems (Bevilacqua et al. 2021; Blevins and Zettlemoyer
2020). However, limited by the scarcity of word sense an-
notations (namely glosses) in dictionaries, obtaining high-
quality word sense representations is an important challenge
for the WSD task (Scarlini, Pasini, and Navigli 2020b; Ku-
mar et al. 2019; Zhang, He, and Guo 2023; Zhang et al.
2022; Zhang, He, and Guo 2022).

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
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SensEmBERT (Scarlini, Pasini, and Navigli 2020a) and
ARES (Scarlini, Pasini, and Navigli 2020b) leverage exten-
sive external knowledge to obtain context-enhanced word
sense representations. BEM (Blevins and Zettlemoyer 2020)
adopts the bi-encoder joint training method to leverage the
context information of the target words to improve the per-
formance of the representations. EWISE (Kumar et al. 2019)
replaces the discrete word sense representation space with a
continuous space for better generalization performance on
both seen and unseen word senses, which mines the inher-
ent constraints between word senses. In addition, methods
proposed by Hadiwinoto et al. (Hadiwinoto, Ng, and Gan
2019), Luo et al. (Luo et al. 2018b), Simov et al. (Simov,
Osenova, and Popov 2016) are also included.

The above methods employ a single representation en-
hanced by introducing external knowledge or mining in-
trinsic constraints to describe each word sense, such as
glosses from different dictionaries or multilingual glosses.
By analyzing the similarity between glosses of the same
word sense, we find that there are significant semantic bi-
ases (Misono et al. 1997; Nikolov and d’Aquin 2020) be-
tween the glosses, as shown in Fig. 1. It reveals that it is
difficult to effectively coordinate glosses from different def-
inition perspectives (or descriptions from different applica-
tion scenarios) using a single representation. For example,
to characterize a set of features, picking only one of them
or taking their average results in inaccurate descriptions and
loss of information.

In this paper, we try to use multiple representations
to characterize a word sense to simultaneously reveal the
distribution of the representations, and then refer to the
distribution information to improve the accuracy of word
sense recognition. To this end, we adopt the superposition
state (Nielsen and Chuang 2002) in quantum mechanics to
formalize representations from different glosses of the same
word sense, and then reveal their distribution. Furthermore,
we employ the quantum interference model (Busemeyer
and Bruza 2012) to calculate the probability that the tar-
get word belongs to this superposition state. The advantage
of this construction is that the similarity between the tar-
get word and each gloss can be calculated, and the interfer-
ence term derived by the quantum interference model can be
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Figure 1: Statistical distribution of similarity between
glosses of the same word sense in different dictionaries.
Ideally, this distribution should be close to the distribution
shown by the dotted line in the figure. See the appendix sec-
tion for the construction method.

regarded as a confidence level to guide word sense recog-
nition. Specifically, a WSD model is constructed with ref-
erence to the physical experiment settings that derive the
quantum interference model, in order to train our model to
simulate the process of interference experiments. Finally,
experiments are performed under standard WSD evaluation
framework and the latest cross-lingual datasets, and the re-
sults confirm the effectiveness of our model.

The contributions can be summarized as follows:

• Propose to adopt multi-view word sense representation to
improve the one-sidedness of single-view representation,
and deduce a generalized quantum interference model for
the identification of multi-view representation;

• Construct a WSD model with reference to the interfer-
ence experiment, and achieve comparable performance
on a standard WSD evaluation framework and cross-
lingual datasets.

Related Work
Word Sense Disambiguation
WSD is a traditional lexical-level task, and its research ap-
proaches can be roughly divided into knowledge-based ap-
proaches and supervised approaches (Bevilacqua et al. 2021;
Navigli 2009; Edmonds and Agirre 2006).

Knowledge-based approaches utilize computational
dictionaries, such as WordNet (Miller 1998) or Babel-
Net (Navigli and Ponzetto 2012), especially their graph
structures, to identify contexts in which word senses ap-
ply, or to obtain representations of word senses. Synta-
gRank (Scozzafava et al. 2020) is a purely graph-based
method, which uses the Personalized PageRank algorithm
to mine the intrinsic relationship between synsets.

Supervised approaches aim to learn a parameter-
ized function that maps from target words to word
senses (Bevilacqua et al. 2021). GlossBERT (Huang et al.
2019) is the earliest supervised approach to integrate gloss
knowledge. BEM (Blevins and Zettlemoyer 2020) uses gloss

knowledge to obtain word sense representations, and lever-
ages the training text to improve the performance of word
sense representations through the bi-encoder joint training
method. In addition, ARES (Scarlini, Pasini, and Navigli
2020b) obtains context-enhanced word sense representa-
tions by augmenting external knowledge; EWISE (Kumar
et al. 2019) improves the performance of word sense repre-
sentations by constraining the word sense space.

The above methods use a single word sense representation
to fuse descriptions from different scenarios or glosses from
different perspectives, resulting in the obtained representa-
tions ignoring the individualized features of each word sense
and losing information. Our method uses a multi-view word
sense representation to characterize multiple glosses of the
same word sense, which not only combats the above short-
comings, but also leverages the semantic biases between
glosses to calibrate the decision of word sense recognition.

Quantum-theoretical Approaches
The unique advantages of quantum theory in modeling hu-
man cognitive behavior stimulate research interests in quan-
tum cognition (Busemeyer and Bruza 2012; Zhang et al.
2020, 2021a,b). Currently, quantum-theoretical approaches
have not received enough attention for the WSD task.

For WSD, models or methods inspired by quantum theory
are still in the early stage of research, and they simply use the
basic mathematical structures of quantum mechanics. Tam-
burini (Tamburini 2019), based on quantum probability the-
ory, builds word and sentence embeddings in the complex
form and achieves state-of-the-art performance without long
training phases. Júnior et al. (Júnior, de Andrade Lopes, and
Amancio 2018) and Amancio et al. (Amancio, Oliveira, and
da Fontoura Costa 2012) both use complex networks to build
WSD systems and the experimental results show that the
representation method under the complex form is beneficial
to word sense recognition.

Our method uses a quantum superposition state to char-
acterize word sense representations from multiple perspec-
tives, and uses a quantum interference model to obtain out-
put probabilities, so that semantic biases between represen-
tations can be used to guide word sense recognition.

Quantum Interference Model
Preliminaries
To understand the quantum interference model and our WSD
system, this section introduces the necessary background
knowledge of Quantum Probability Theory (QPT). QPT is
a generalization of Classical Probability Theory (CPT), and
it covers CPT perfectly (Nielsen and Chuang 2002).

Quantum Events: Similar to Kolmogorovian probabil-
ity theory, QPT assigns probabilities to events; however, the
difference is that CPT defines events as sets, while QPT
as subspaces of a multidimensional complex Hilbert space
H = Cn.

Quantum States: A quantum state is used to describe
a quantum system, and is defined as a complex vector in
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Hilbert space using Dirac1 notation, e.g., |ψ〉 ∈ H with
‖|ψ〉‖ = 1. A more general high-dimensional quantum state
can be defined as

|ψ〉 = φ1|e1〉+ φ2|e2〉+ ...+ φi|ei〉+ ... (1)

where φi is a complex number called the probability ampli-
tude,

∑
i(φi)

2 = 1, φi = 〈ei|ψ〉, and {|ei〉} is the basis of
the Hilbert space H. This state is also called a superposi-
tion state, and its basis vectors are called the basic states. It
is also possible to construct a superposition state from other
superposition states,

|Ψ〉 = φ1|ψ1〉+ φ2|ψ2〉+ ...+ φi|ψi〉+ .... (2)

Quantum Measurements: After having a quantum sys-
tem described by quantum states, the internal situation
of the system, that is, the probability distribution of sub-
spaces, can be known through quantum measurement op-
erations (Nielsen and Chuang 2002). Quantum measure-
ments can be defined in various ways, such as general mea-
surement, projection measurement, and POVM measure-
ment (Deutsch 1983). Among them, general measurement
is often used in the field of machine learning, so this mea-
surement is mainly introduced.

General measurement is described by a set of measure-
ment operators {Pm}, wherem represents the possible mea-
surement results in the experiment, and these operators act
on the state space of the subsystems. When the quantum sys-
tem is |ψ〉 before the measurement, then the probability of
the measurement result m is defined as

P(m) = 〈ψ|P †mPm|ψ〉 = ‖Pm|ψ〉‖2. (3)

After the measurement, the state of the system is changed to

|ψ〉 = |ψ
′
〉 =

Pm|ψ〉√
〈ψ|P †mPm|ψ〉

. (4)

The measurement operators need to satisfy completeness,∑
m

P †mPm = I, (5)

which reveals the fact that the sum of probabilities is 1,∑
m

P(m) =
∑
m

〈ψ|P †mPm|ψ〉 = 1. (6)

Quantum Interference Experiment
Interference effects are one of the most interesting phenom-
ena that only arise in the field of quantum physics (Jakle-
vic et al. 1964). The classical interference experiment (also
called the double-slit experiment) is often used as a simple
example to introduce quantum interference effects, as shown
in Fig. 2.

1In Dirac notation, |·〉 is a column vector (called ket), while 〈·|
is a row vector (called bra). Using these symbols, the inner product
can be expressed as 〈x|y〉 and the outer product as |x〉〈y|. Also
〈x| = |x〉† where “†” marks the conjugate transpose operation on
vectors or matrices.

Electron
Bean Gun

Electrons

Double-slit
Screen

Detection
Panel

Interference
Pattern

Figure 2: Schematic of the interference experiment.

An electron beam gun fires electrons towards the detec-
tion panel through a screen with two slits A and B. The
specific position where the electrons land on the detection
panel is marked as x. When closing one of the two slits, say
B, the probability that the electrons pass through the slit A
and land at the position x can be calculated,

PA(x) = ‖Px|ψA〉‖2 (7)

where Px refers to the measurement operator for the posi-
tion x, and |ψz〉, z ∈ {A,B}, refers to the electrons pass-
ing through the slit z. Correspondingly, when the slit A is
closed, the probability that the electrons pass through the
slit B and land at the position x is

PB(x) = ‖Px|ψB〉‖2. (8)

Using CPT, the probability that both slits are open and the
electrons pass through either slit A or B and land at the po-
sition x is

PAB(x) = PA(x) + PB(x) (9)

= ‖Px|ψA〉‖2 + ‖Px|ψB〉‖2.

However, the actual experimental results reveal that the
double-slit experiment cannot be described by CPT, that is,
the above formula Eq. (9) does not hold, and an additional
interference term IntAB(x) needs to be added, that is,

PAB(x) = PA(x) + PB(x) + IntAB(x). (10)

In the following, based on QPT, a quantum interference
model consistent with the double-slit experimental phe-
nomenon is deduced, and its generalized form is given.

Quantum Interference Model
The double-slit experiment shows that microscopic parti-
cles (including electrons) can be in the form of superposi-
tion, that is, in the double-slit experiment, an electron passes
through the slits A and B at the same time and interferes
with each other.

In quantum mechanics, a system in the form of a superpo-
sition is described by a superposition state, so the measured
system can be defined as

|ΨAB〉 = α|ψA〉+ β|ψB〉 (11)
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where α, β ∈ C, and |α|2 + |β|2 = 1. When the measure-
ment operator of the observation is denoted as Px, the quan-
tum interference model conforming to the double-slit ex-
perimental phenomenon can be defined as

PAB(x) =‖Px|ΨAB〉‖2 (12)

=‖Px(α|ψA〉+ β|ψB〉)‖2

=‖αPx|ψA〉+ βPx|ψB〉‖2

=‖αPx|ψA〉‖2 + ‖βPx|ψB〉‖2

+ 2αβ cos(θ)|〈ψA|Px|ψB〉|

where θ is the phase angle of the inner product 〈ψA|Px|ψB〉.
From this, the interference term in Eq. (10) can be deter-
mined,

IntAB(x) = 2αβ cos(θ)|〈ψA|Px|ψB〉|. (13)

Similarly, for high-dimensional superposition states such
as Eq. (2), the generalized form of the quantum interfer-
ence model can be defined as

P(x)=
∑
i

‖φiPx|ψi〉‖2+
∑

i,j;i6=j

Inti,j(x). (14)

Analysis: Compared with the classical probability model,
the quantum interference model adds the interference term,
which reveals the impact of the distribution of subsystems on
the measurement operator. In specific tasks, the interference
term can be given practical meaning. For example, in this
paper, the interference term can be regarded as a confidence
level (the degree of certainty that the target word belongs
to this word sense distribution family) to guide word sense
recognition. The interference term derived from the quan-
tum interference model shows the ability to evaluate the dis-
tribution of features, which can be analogized to the global
perception ability in human cognitive behavior.

Methodology
Word Sense Disambiguation
WSD belongs to a standard classification task, which aims to
learn a mapping from a target word wtarget given a specific
context C to a word sense si in a candidate list S of word
senses,

wtarget ∈ C −→ si ∈ S, (15)
where the candidate list of word senses comes from the word
senses listed in the dictionary.

Quantum Interference Model for WSD
The physical experimental setup that derives the quantum
interference model is itself a cyclic system that repeatedly
emits electrons and counts their probability distribution, so
building our WSD system (as shown in Fig. 3) with refer-
ence to this setup is not only easier to understand but also
conforms to the process of organizing components of the
quantum interference model.

The electron emitted by the electron bean gun is de-
noted as P , which has one observation described by a set
of measurement operators P+ and P−. In the WSD task,
this observation is regarded as a word sense observation, so

P+(P−) can be used to verify the correctness (wrongness)
of the word sense of the target word. Due to the complete-
ness of the measurement operators, i.e., Eq. (5), only one of
the measurement operators is required. Here, P+ is selected,
that is, we only calculate the probability that this word sense
is the correct option.

As shown in Fig. 3, we use the pre-trained model
BERT (Devlin et al. 2019) to obtain the word embedding
of the target word, Vtarget, transform it into a quantum state
by borrowing the sum of squares normalization function,

|ψtarget〉 = SSN (Vtarget) (16)

=
1√∑

i V
2
target,i

Vtarget,

and then construct it as the measurement operator of the
word sense observation of the target word,

P target
+ = |ψtarget〉〈ψtarget|. (17)

After passing through the screen, the electron is mod-
ified into a superposition state |Ψ〉 under a set of quantum
states {|ψk〉}Kk=1. In the WSD task, the set of quantum states
is different for different word senses of the target word. As-
suming that there are three different glosses for the word
sense sensei, i.e., K = 3, the set of quantum states is de-
noted as {|ψsensei

glossk
〉}K=3

k=1 .
As shown in Fig. 3, we use the pre-trained model BERT to

obtain the text embeddings of the glosses of the word sense
sensei, V sensei

glossk
, transform them into the quantum states by

borrowing the sum of squares normalization function,

|ψsensei
glossk

〉 = SSN (V sensei
glossk

), (18)

and then construct them into a superposition state

|Ψsensei〉 =

K∑
k=1

φk|ψsensei
glossk

〉 (19)

where φk can be set to a specific value, or can be obtained
by Neural Network based on Vtarget and V sensei

glossk
,

φk = NN ([Vtarget, V
k
glosss ]). (20)

After landing on the detection panel, the electron is
counted by the corresponding observations, and the prob-
ability of the measurement operators of the observations can
be calculated using the quantum interference model, i.e.,
Eq. (14). In the WSD task, the probability value obtained
by the measurement operator P target

+ and the superposition
state |Ψsensei〉 through the quantum interference model,

Psensei(+) =
K∑

k=1

‖φkP target
+ |ψsensei

glossk
〉‖2 (21)

+
∑

k,k′;k 6=k′

Intsenseiglossk,glossk′ (+),

can be regarded as the similarity between the word vector of
the target word and the text vector of the word sense sensei.
Therefore, this value can be used to finally determine the
correct word sense of the target word.
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[CLS] they built a plant

BERT of Glosses

[CLS] buildings for carrying on

Buildings for carrying on …

Gloss 1

BERT of Glosses
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C

Probability of 
Word Sense 𝑖
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$%&$%"

Gloss K

Figure 3: Schematic diagram of the model structure. The circled M, S and C refer to constructing measurement operators,
generating quantum states and combining superposition states, respectively.

Model Training
The quantum interference experiment is essentially to re-
peatedly emit electrons and measure the electrons to obtain
their probability distribution. Therefore, the training process
of our WSD system can be regarded as cyclically identify-
ing the word sense of the target words in the training set and
updating the parameters of the quantum interference model
through the loss function.

The loss function of the system is defined as
Loss(Score, index) (22)

= − log

(
exp(Score[index])∑
i=1 exp(Score[i])

)
= −Score[index] + log

∑
i=1

exp(Score[i])

where index is the index of the candidate list of word senses
of the target word and

Score = [Psense1(+), ...,Psensei(+), ...]. (23)
Our system employs the Adam (Kingma and Ba 2015)

optimizer to update the parameters of the model, and the
specific settings of the optimizer will be given in the experi-
mental section.

Experiments
To answer the following three questions through experimen-
tal analysis:
• Q1: Compared to baseline models and previous work,

does the WSD model constructed from the quantum in-
terference model have comparable advantages?

• Q2: Do the multi-perspective word sense representation
and the interference term derived from the quantum in-
terference model play a role in word sense recognition?

• Q3: Can the model be extended to other languages, that
is, what is its generalization performance?

Datasets
Our WSD model is evaluated under the standard English
all-words WSD evaluation framework proposed by Nav-
igli et al. (Navigli, Camacho-Collados, and Raganato 2017).
The training set is SemCor2 (Miller et al. 1993); the de-
velopment set is selected as SemEval-2007 (SE07; Pradhan
et al. (2007)) by convention; the test sets include Senseval-
2 (SE2; Palmer et al. (2001)), Senseval-3 (SE3; Snyder and
Palmer (2004)), SemEval-2013 (SE13; Navigli, Jurgens, and
Vannella (2013)), SemEval-2015 (SE15; Moro and Navigli
(2015)), and the combination of all test sets (shown as ALL).
In addition, the sets of nouns, verbs, adjectives and adverbs
extracted from ALL are also used as the test set. By conven-
tion, F1-score in percentage is used as an evaluation metric.
All glosses used in this paper are from BabelNet3.

Baselines
To evaluate our model and determine its place in the WSD
community, we divide the comparison models into two
groups, namely the previous work and the baseline systems.

2http://lcl.uniroma1.it/wsdeval/training-data
3https://babelnet.org/
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Models Dev set Test sets Concatenation of all test sets
SE07 SE2 SE3 SE13 SE15 N. V. Adj. Adv. ALL

Previous Work
HCAN (EMNLP; 2018a) – 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1
GAS (ACL; 2018c) – 72.2 70.5 67.2 72.6 72.2 57.7 76.6 85.0 70.6
GLU (EMNLP; 2019) 68.1 75.5 73.6 71.1 76.2 – – – – 74.1
LMMS (ACL; 2019) 68.1 76.3 75.6 75.1 77.0 – – – – 75.4
SREF (EMNLP; 2020) 72.1 78.6 76.6 78.0 80.5 80.6 66.5 82.6 84.4 77.8
SyntagRank (ACL; 2020) 59.3 71.6 72.0 72.2 75.8 – – – – 71.2
COF (EMNLP; 2021) 69.2 76.0 74.2 78.2 80.9 80.6 61.4 80.5 81.8 76.3
ESR (EMNLP; 2021) 75.4 80.6 78.2 79.8 82.8 82.5 69.5 82.5 87.3 79.8
Z-Reweighting (ACL; 2022) 71.9 79.6 76.5 78.9 82.5 – – – – 78.6
Baseline Systems
GlossBERT (EMNLP; 2019) 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0
EWISE (ACL; 2019) 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8
BEM (ACL; 2020) 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
SensEmBERT (AAAI; 2020a) 73.6 80.6 70.3 74.8 80.2 – – – – 75.9
ARES (EMNLP; 2020b) 71.0 78.0 77.1 77.3 83.2 80.6 68.3 80.5 83.5 77.9
Quantum-inspired models
QWSD (RANLP; 2019) – 70.5 69.8 69.8 73.4 73.6 54.4 77.0 80.6 70.6
Our-Base 74.4 80.8 78.5 80.0 82.9 82.7 69.5 83.0 86.5 80.1
Our-Large 75.0 81.5 79.2 81.2 83.2 84.4 71.7 84.4 87.5 81.6

Table 1: F1-score (%) on the English all-words WSD task. The experimental results are divided into two parts: one is the
previous work, and the other is the baseline systems. The best performance compared to Our-Base and Our-Large is shown in bold
and bold italics, respectively.

For the previous work, we select excellent models
from the past five years. HCAN (Luo et al. 2018a) and
GAS (Luo et al. 2018c) in 2018, LMMS (Loureiro and Jorge
2019) and GLU (Hadiwinoto, Ng, and Gan 2019) in 2019,
SREF (Wang and Wang 2020), ARES (Scarlini, Pasini, and
Navigli 2020b) and SyntagRank (Scozzafava et al. 2020) in
2020, COF (Wang, Zhang, and Wang 2021) and ESR (Song
et al. 2021) in 2021, and Z-Reweighting (Su et al. 2022) in
2022 are selected. Their results are taken from the published
data of the original paper.

For the baseline systems, we compare Gloss-
BERT (Huang et al. 2019) which first integrates gloss
knowledge, EWISE (Kumar et al. 2019) which employs
continuous space to constrain word sense representations,
BEM (Blevins and Zettlemoyer 2020) which borrows
training text to improve word sense representations,
and SensEmBERT (Scarlini, Pasini, and Navigli 2020a)
and ARES (Scarlini, Pasini, and Navigli 2020b) which
strengthen word sense representations by introducing exter-
nal knowledge. In addition, we compare QWSD (Tamburini
2019) which is also inspired by quantum theory. Their
results are also taken from the original paper.

Settings

The operating platform of the hardware is Ubuntu 18.04.3
and has six GPU whose version is NVIDIA GeForce RTX
3090. The development platform is Python 3.8.34, and the

4https://www.python.org/

learning framework is Pytorch 1.8.15. The pretrained lan-
guage model BERT (Devlin et al. 2019) is provided by
Transformers 4.5.16. Following the traditional comparison
method, the versions BERT-base-uncased and BERT-large-
uncased are used to build the encoders of our model, and
the constructed model are called Our-Base and Our-Large,
respectively. The hyperparameters Learning Rate, Context
Batch Size, Gloss Batch Size, Epochs, Context Maximum
Length and Gloss Maximum Length of the model are set to
[1E-5, 5E-6, 1E-6], [1, 2, 3, 4], 256, 20, 128 and 32, respec-
tively. Hyperparameters not listed are given in the published
code.

Results and Analysis
For Q1, the following experimental analysis provides an an-
swer. The experimental results under the English all-words
WSD evaluation framework are shown in Tab. 1.

Our model performs well on multiple test sets, indicat-
ing that the scheme of characterizing multi-view word sense
representation based on the quantum superposition state and
using the quantum interference model to calculate the prob-
ability is effective. In addition, both Our-Base and Our-Large
have excellent performance on the important test set ALL,
which proves that our model is reliable.

Compared with previous work, the gap opened by
Our-Base is not significant because they are not based on the
same experimental settings and using the same external re-

5https://pytorch.org/
6https://huggingface.co/
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Models Test sets
SE2 SE3 SE13 SE15 ALL

Our-single
-Base 79.4 77.4 79.7 81.7 79.0

Our-inter
-Base 77.8 75.5 76.5 80.0 77.1

Our-Base 80.8 78.5 80.0 82.9 80.1

Table 2: The experimental results of ablation study under the
English all-words WSD evaluation framework.

sources; Our-Large achieves outstanding performance, indi-
cating that relying on more powerful pre-trained models can
further stimulate potential.

Compared with the baseline systems, the experimental
results prove that the multi-view word sense representa-
tion method proposed in this paper is definitely helpful
to improve the performance. Comparing similar quantum-
inspired model QWSD (Tamburini 2019), it turns out that
representations based on quantum superposition states are
better than representations based on complex numbers.

Analysis of poor results: On the training set, our model
is inferior to ESR (Song et al. 2021), but better than the
other comparison models, possibly because our model does
not overfit the training set. On the test set SE15, our model
Our-Base is inferior to ARES (Scarlini, Pasini, and Navigli
2020b). Through the analysis of this dataset, it is found that
the dataset mostly uses high-frequency word senses. Be-
cause the recognition difficulty of this dataset is relatively
low, the multi-view word-sense representation of our model
will actually drag down the overall performance. By ana-
lyzing the constructed test set Adv., we find the same phe-
nomenon as SE15. This result once again proves that for
a dataset with a large proportion of high-frequency word
senses, choosing a reliable single representation is the best
choice.

Ablation Study

For Q2, ablation experiments are used to answer the ques-
tion. We replace the original multi-view word sense repre-
sentation with a single representation to construct the ab-
lation model Our-single

-Base , and delete the interference term on
the original model to construct the ablation model Our-inter

-Base.
The experiments are carried out under the standard English
all-words WSD evaluation framework, and the experimental
results are shown in Tab. 2.

From Tab. 2, our improvement is worthwhile. Compared
with Our-single

-Base , the original model has an improvement of
more than one percentage point on each test set, indicating
that the multi-view word sense representation does help to
improve the performance of word sense recognition. Com-
pared with Our-inter

-Base, the original model has an improvement
of three percentage points on multiple test sets, revealing
that the quantum interference term can serve as a meaning-
ful supervisory signal to improve the performance of word
sense recognition, and indirectly indicating that characteriz-
ing the distribution of word senses is valuable.

Figure 4: The experimental results under the cross-lingual
datasets.

Experiments on Cross-Lingual Datasets

We perform experiments under the cross-lingual datasets
to answer Q3. The datasets7 are proposed by Pasini et
al. (Pasini, Raganato, and Navigli 2021) Since it is diffi-
cult to obtain glosses in the corresponding language, here we
adopt a compromise solution to replace glosses in other lan-
guages with English glosses. The pretrained language model
used in our model is also adjusted to bert-base-multilingual-
cased accordingly. The comparison model selects XLMR-
Base (Conneau et al. 2020) provided in the original paper
of the datasets, and the experimental results are shown in
Fig. 4.

From Fig. 4, our model outperforms the comparison
model in most languages, indicating that our model has cer-
tain robustness. By analyzing the underperforming datasets,
we find that they are mostly niche or non-alphabetic lan-
guages. The reason for the poor results is that we use English
glosses instead of glosses in other languages, so languages
with similar character types to English will perform better.

Conclusions
Aiming at the problem that the current WSD models lever-
age external knowledge from different sources to enhance
a single word sense representation, this paper proposes a
multi-view word sense representation to deal with the se-
mantic biases existing in external knowledge. We adopt a
quantum superposition state to formalize glosses from dif-
ferent sources, and employ the quantum interference model
to obtain the probability that the target word belongs to this
superposition state. The advantage of this construction is
that the interference term derived from the quantum inter-
ference model can be regarded as a confidence level (that is,
a supervisory signal from the gloss distribution information)
to improve word sense recognition. The contribution of this
paper is to propose an effective alternative to the traditional
single word-sense representation, and to verify the validity
of this representation on extensive experiments.

7https://sapienzanlp.github.io/xl-wsd/
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Construction method of Fig. 1
For Fig. 1, the statistics come from multiple glosses for the
same word sense in BabelNet 5.1 (mainly using the two
glosses from WordNet 3.0 and Wikipedia collected by Ba-
belNet). The original embeddings of the glosses are obtained
from the original pre-trained language model BERT, and the
ideal embeddings are obtained from the trained BERT model
(that is, the optimized and learned BERT model in this pa-
per). The calculation method of similarity between the em-
beddings of two glosses of the same word sense includes:
measuring the Euclidean distance between vectors, and set-
ting the similarity of mutually orthogonal vectors to 0, and
constraining other values to be between -1 and 1. Finally, the
statistical results of the original glosses and the ideal glosses,
that is, the distribution of the real situation and the distri-
bution of the ideal situation, are obtained respectively. The
ideal distribution is smoothed.
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