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Abstract
Word Sense Disambiguation (WSD) aims to determine the
meaning of target words according to the given context.
The recognition of high-frequency senses has reached ex-
pectations, and the current research focus is mainly on low-
frequency senses, namely Long-tail Senses (LTSs). One of
the challenges in long-tail WSD is to obtain clear and dis-
tinguishable definition representations based on limited word
sense definitions. Researchers try to mine word sense defini-
tion information from data from different sources to enhance
the representations. Inspired by quantum theory, this paper
provides a constraint mechanism for representations under
non-homogeneous data to leverage the geometric relationship
in its Hilbert space to constrain the value range of parameters,
thereby alleviating the dependence on big data and improv-
ing the accuracy of representations. We theoretically analyze
the feasibility of the constraint mechanism, and verify the
WSD system based on this mechanism on the standard evalu-
ation framework, constructed LTS datasets and cross-lingual
datasets. Experimental results demonstrate the effectiveness
of the scheme and achieve competitive performance.

Introduction
Word Sense Disambiguation (WSD) aims to determine the
meaning of target words according to the given context,
which belongs to the basic research topic in the field of
natural language processing (Bevilacqua et al. 2021; Nav-
igli 2009). The accuracy of WSD is of great significance
and value to downstream tasks (Kaddoura, Ahmed, and
D. 2022), such as machine translation (Campolungo et al.
2022), information retrieval (Abderrahim and Abderrahim
2022), sentiment analysis (Farooq et al. 2015), etc. In addi-
tion, WSD, like text classification, is often used as a training
ground for new models and methods.

WSD systems have reached expectations for the recog-
nition of high-frequency senses (that is, commonly used
word senses), and the current research focus is mainly on
the recognition of low-frequency senses (that is, rarely used
word senses), also known as Long-Tail Senses (LTSs) (Su
et al. 2022; Zhang et al. 2022b; Chen, Zhang, and He 2022;
Du et al. 2021; Blevins and Zettlemoyer 2020). The root of
the difficulty in long-tail WSD lies in:
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• LTSs are rarely used, which leads to insufficient training
samples;

• LTSs lack clear and distinguishable definitions, which
leads to inaccurate representation of word sense defini-
tions.

Among them, training samples refer to the application sce-
narios of word senses, such as example sentences given
in dictionaries, which provide the context information of
target words; word sense definitions refer to the descrip-
tions of word senses, such as glosses given in dictionaries,
which provide word sense label information. In the process
of WSD, the two jointly affect the accuracy of word sense
recognition. There are many methods to deal with the lack
of training samples of LTSs, and the solution is similar to
the classic few-shot task, so this paper focuses on improving
the inaccurate representation of word sense definitions.

Kumar et al. (Kumar et al. 2019) constructed word sense
definition representations in a continuous space to con-
strain unclear representations through clear ones. Blevins et
al. (Blevins and Zettlemoyer 2020) leveraged the semantic
knowledge in the training samples to enhance the word sense
definition representations through the joint training of dual
encoders (that is, the target word encoder and the definition
encoder). Zhang et al. (Zhang et al. 2022a) realized the en-
hancement of word sense definition representations by in-
tegrating example sentences and definitions of related word
senses in WordNet. It is not difficult to see from the relevant
research in recent years that the effective means of strength-
ening word sense definition representations is to integrate
external knowledge and impose constraint mechanisms.

Inspired by quantum theory (Nielsen and Chuang 2002),
this paper proposes a quantum-like model that can simulta-
neously expand external knowledge and enforce constraints.
More importantly, the constraint mechanism not only pro-
vide constraints in continuous space, but also implement ge-
ometric constraints in Hilbert space for representations of
non-homogeneous data. Specifically, firstly, we map homol-
ogous or non-homologous data into corresponding embed-
dings through classical language models, such as BERT (De-
vlin et al. 2019); secondly, impose normalization constraints
on the embeddings to make them quantum states; thirdly,
combine the states into a superposition state; finally, the
quantum measurement operation is implemented to obtain
the result.



Note that homologous data refers to data generated by the
same generator (that is, has the same structure and obeys
similar statistical laws); otherwise, it is non-homologous
data. The quantum-like model exhibits spatial geometry
constraints only when the generated representations come
from non-homogeneous data. If the model is used on homo-
geneous data, it can only provide representation combina-
tions and continuous space constraints.

Our contributions can be summarized as follows:

• A quantum-like model that can simultaneously pro-
vide representation combinations, continuous space con-
straints, and spatial geometry constraints is proposed, in-
spired by quantum theory;

• A theoretical analysis of why the geometric constraint
mechanism can be helpful for few-shot learning tasks is
given;

• Finally, the WSD system based on the quantum-like
model is verified on the standard evaluation framework,
constructed LTS datasets and cross-lingual datasets;
the experimental results prove the effectiveness of the
quantum-like model and achieve state-of-the-art perfor-
mance.

Related Work

Long-tail WSD

The recognition process of WSD is a matching process be-
tween the target word embedding and the text embedding of
word sense definitions, so the solutions for long-tail WSD
can be roughly divided into two categories, enhancing the
representation of target words and improving the represen-
tation of word sense definitions. The research focus of this
paper is on improving the representation of word sense def-
initions.

Huang et al. (Huang et al. 2019) first proposed to train
the representation of word sense labels through the word
sense definitions in the dictionary. Subsequently, Blevins et
al. (Blevins and Zettlemoyer 2020) enhanced the represen-
tation of word sense definitions through the semantic infor-
mation in the training samples; Yap et al. (Yap, Koh, and
Chng 2020) and Zhang et al. (Zhang, He, and Guo 2021)
borrowed the example sentences from the dictionary; Scar-
lini et al. (Scarlini, Pasini, and Navigli 2020a) used multilin-
gual knowledge. Kumar et al. (Kumar et al. 2019) leveraged
continuous space constraints to enhance unclear representa-
tions from clear representations of word sense definitions.
In addition, Kumar et al. (Kumar et al. 2019) and Holla et
al. (Holla et al. 2020) also transferred solutions from the
fields of few-shot learning and meta learning.

It is not difficult to see from the related work in re-
cent years that integrating external resources and impos-
ing constraint mechanisms are the mainstream methods to
deal with long-tail WSD. The work in this paper attempts
to achieve the above two functions in one model, and pro-
vides spatial geometry constraints for representations under
non-homogeneous data.

Quantum-inspired Models for WSD
Quantum-inspired models refer to learning models based
on quantum theory (Nielsen and Chuang 2002) or quan-
tum cognition (Busemeyer and Bruza 2012). Since the suc-
cess of the quantum language model proposed by Basile et
al. (Basile and Tamburini 2017), the intersection of quan-
tum theory and natural language processing has gradually
become a research hotspot (Li et al. 2016; Xie et al. 2015).

In the field of WSD, related research is still in the early
stages of exploration. The model QWSD proposed by Tam-
burini et al. (Tamburini 2019) is the first of its kind. Al-
though QWSD is very simple in model design, its advantage
is that it does not require a long training process. In addi-
tion, the WSD system proposed by Zhang et al. (Zhang et al.
2022b) uses the disentanglement representation inspired by
quantum theory.

Our work also leverages the mathematical form of quan-
tum theory, namely quantum probability theory, to realize
that the constructed WSD model can combat the data spar-
sity problem faced by long-tail WSD.

Theoretical Analysis
Preliminaries
Before analyzing the constraint mechanism and present-
ing the quantum-like model, the necessary preliminaries
of Quantum Probability Theory (QPT) is given. QPT is a
more general probability theory, which is backward compat-
ible with Classical Probability Theory (CPT), namely Kol-
mogorov probability theory. QPT, like CPT, can be used as
a modeling tool for information systems. See Ref. (Nielsen
and Chuang 2002) for more details.

Quantum Events: QPT assigns probabilities to events
like CPT, but the difference is that events in quantum proba-
bility are described by subspaces in Hilbert space H ∈ Cn,
while events in classical probability are described by sets.

Quantum States: Quantum states, also called quantum
systems, are described as complex vectors |ψ⟩ ∈ H in
Hilbert space using the Dirac1 notation. Quantum superpo-
sition states refer to quantum states in which multiple states
are superimposed at the same time. Its formalization is de-
fined as

|ψ⟩ = ε1|e1⟩+ ε2|e2⟩+ ...+ εi|ei⟩+ ... (1)

where εi is called the probability amplitude, εi = ⟨ei|ψ⟩ ∈
C,

∑
i |εi|2 = 1, and |ei⟩ is the basis state of H. In general,

superposition states can also be composed of other superpo-
sition states,

|Ψ⟩ = ε1|ψ1⟩+ ε2|ψ2⟩+ ...+ εi|ψi⟩+ .... (2)

Quantum Measurements: The mainstream quantum
measurement methods include general measurement, pro-
jection measurement and POVM measurement. Among

1In Dirac notation, |·⟩ is a column vector (or called ket), and
⟨·| is a row vector (or called bra). Using these symbols, the inner
product can be expressed as ⟨·|·⟩ and the outer product as |·⟩⟨·|.
Also ⟨·| = |·⟩†, where † marks the conjugate transpose operation
on vectors or matrices.



them, general measurement is often used in the field of ma-
chine learning, so only general measurement is presented
here.

General measurement is described by a set of measure-
ment operators {Mm}, and they satisfy completeness,∑

m

M†
mMm = I, (3)

where m refers to a possible measurement result in the ex-
periment, and I refers to the identity matrix. The quantum
system is in |ψ⟩ before being measured, and the probability
of the possible result m is

p(m)=p(Mm; |ψ⟩)=⟨ψ|M†
mMm|ψ⟩ = ∥Mm|ψ⟩∥2; (4)

after being measured, the quantum system is in

|ψ′⟩ = Mm|ψ⟩√
⟨ψ|M†

mMm|ψ⟩
. (5)

From the completeness of the measurement operators, it can
be deduced that∑

m

p(m) =
∑
m

⟨ψ|M†
mMm|ψ⟩ = 1. (6)

Theoretical Analysis for Quantum-inspired
Constraint Mechanism
In the field of quantum information processing, the charac-
teristic representations from data are described as quantum
states, multi-source data are often integrated as quantum su-
perposition states, and possible results are described by mea-
surement operators (Nielsen and Chuang 2002; Zhang et al.
2020, 2021, 2022c,d).

Accordingly, the quantum states |ψA⟩ and |ψB⟩ obtained
from non-homologous data, sayA andB, can be constructed
as the superposition state,

|ΨAB⟩ = α|ψA⟩+ β|ψB⟩, (7)

where α, β ∈ R are the probability amplitudes of construct-
ing the superposition state, and α2 + β2 = 1. In specific
tasks, it can be a superposition state composed of multiple
quantum states, or a probability amplitude in the form of
complex numbers. The measurement operators correspond-
ing to the possible results can be described by a concrete
basis state |ei⟩, Mm = |ei⟩⟨ei|, or by a quantum state |ϕ⟩
obtained from the label data ϕ,

Mm = |ϕ⟩⟨ϕ|. (8)

The probability of the possible result m is

p(Mm; |ΨAB⟩) = ∥Mm|ΨAB⟩∥2 (9)

= ∥Mm(α|ψA⟩+ β|ψB⟩)∥2

= ∥αMm|ψA⟩+ βMm|ψB⟩∥2

= ∥αMm|ψA⟩∥2 + ∥βMm|ψB⟩∥2 + Int,

where the interference term Int is

Int = 2αβ cos(θ)|⟨ψA|Mm|ψB⟩| (10)
= 2αβ cos(θ)|⟨ψA|ϕ⟩⟨ϕ|ψB⟩|

Figure 1: Schematic illustration of the geometric relation-
ship between quantum states in Hilbert space revealed by
the interference term.

and θ is the phase angle between quantum states.
The interference term is a unique feature derived from

quantum probability, which reveals the geometric relation-
ship of quantum states in Hilbert space, as shown in Fig. 1.
α and β in the interference item are the parameters for con-
structing the superposition state, which can be regarded as
weights. |⟨ψA|ϕ⟩| and |⟨ϕ|ψB⟩| describe the side lengths of
the two sides of the triangle in the illustration, and cos(θ) is
the degree of an angle of the triangle. They jointly describe
the area of the triangle, so the interference term itself can be
considered as a description of the geometric relationship of
the quantum state in Hilbert space.

In the learning model constructed in the above form, the
interference term is used as a constraint item of the loss func-
tion to realize the spatial geometry constraint between the
quantum states (that is, the representation obtained from the
label data and the representations obtained from the non-
homologous data). Compared with the traditional loss func-
tion with no constraint term, the loss function with the spa-
tial geometry constraints can limit the value range of the
features in the representation and alleviate the dependence
on the large amount of data in the representation learning
process. In fact, it is not difficult to understand that the con-
straint item describing the geometric relationship limits the
positional relationship of the representations in space, which
can naturally improve the difficulty of representation learn-
ing compared to unconstrained representations.

Methodology
Word Sense Disambiguation
The WSD task can be formalized as a mapping function
from the word embedding of the target word in the dis-
ambiguated text, V target ∈ R1×n, to the text embedding
of word sense definitions in the dictionary, V definitions

k ∈
R1×n,

F : V target → V definitions
k (11)

where V definitions
k refers to the k-th word sense in the can-

didate list corresponding to the target word (Bevilacqua et al.



Figure 2: The architecture of QiWSD: a word sense disambiguation system with a traditional recognition method for high-
frequency senses and a quantum recognition method for long-tail senses that can integrate non-homologous data using the
quantum-like model.

2021; Navigli 2009; Zhang et al. 2024; Zhang, He, and Guo
2023).

Quantum-like Model with Quantum-inspired
Constraint Mechanism
The core part of the quantum-like model with quantum-
inspired non-homologous representation constraint mecha-
nism is a quantum measurement operation, that is,

p(Mm; |Ψ⟩) = ∥Mm|Ψ⟩∥2, (12)

in which the important components are the superposition
state |Ψ⟩ and the measurement operator Mm.

A superposition state can be composed of any number of
quantum states |ψi⟩,

|Ψ⟩ = ε1|ψ1⟩+ ε2|ψ2⟩+ ...+ εi|ψi⟩+ ...; (13)

the quantum states can be obtained by imposing a normal-
ized function of the sum of squares on general representa-
tions Vi,

|ψi⟩ = SSN(Vi) =
Vi√
∥Vi∥2

. (14)

The representations used to construct the superposition state
can be obtained from homologous or non-homologous data.
However, the representations obtained based on homologous
data do not have the spatial geometry constraints pointed out
in this paper, because the representations obtained from ho-
mologous data will eventually be merged into one. It should

be noted that the quantum-like model is also valuable for
homogeneous data, which is equivalent to a model with data
integration capabilities.

A measurement operator is constructed from a quantum
state |ϕ⟩,

Mm = |ϕ⟩⟨ϕ|; (15)
the quantum state can also be obtained by applying SSN(·)
to a general representation Vm,

|ϕ⟩ = SSN(Vm). (16)

QiWSD: Quantum-inspired WSD System
In this section, we apply the quantum-like model to build
a WSD system to verify whether the spatial geometry con-
straint mechanism applicable to non-homologous data can
improve the inaccurate representation of word sense defini-
tions faced by long-tail WSD tasks. The quantum-inspired
WSD system is called QiWSD, and its model structure is
shown in Fig. 2.

BiWSD consists of two parts, the traditional recognition
method for high-frequency senses and the quantum recog-
nition method enhanced by non-homologous data for LTSs.
The traditional recognition method has been verified to be
effective for high-frequency WSD, and this part is added
to make the overall WSD system take into account high-
frequency senses. The quantum recognition method lever-
ages the spatial geometry constraint mechanism proposed in
this paper, and this part is added to make the overall WSD
system take into account LTSs.



The traditional recognition method uses two pre-
trained language models BERT (Devlin et al. 2019) as en-
coders (namely target word encoder and word sense defi-
nition encoder) to obtain the word embedding of the target
word in the disambiguated text W text,

V target = BERTTarget(W
text), (17)

and the text embedding of the word sense definitions pro-
vided by the glosses W glosses in the dictionary,

V definitions
k = BERTGlosses(W

glosses
k ). (18)

According to the specification of the BERT model, the vec-
tor corresponding to the target word in the disambiguated
text is used as the word embedding of the target word output
by the target word encoder; the vector corresponding to the
start token “[CLS]” in the gloss is used as the text embed-
ding of the word sense definition output by the word sense
definition encoder.

Finally, the inner product of the target word embedding
V target and word sense definition embeddings V definitions

k
is calculated separately to obtain the similarity score of each
word sense under the traditional recognition method,

ScoreTraditional
k = V target ⊙ V definitions

k . (19)

The quantum recognition method uses the target word
embedding and the word sense definition embeddings re-
spectively output by the target word encoder and word
sense definition encoder. Furthermore, example sentences
of word sense definitions from the dictionary are integrated
for word sense definition embeddings using the quantum-
inspired constraint mechanism proposed in this paper.

Similarly, a pre-trained language model BERT is used as
a word sense example encoder to obtain the text embedding
of example sentences W examples,

V examples
k = BERTExamples(W

examples
k ). (20)

Since the target word exists in the example sentence, the vec-
tor corresponding to the target word in the example sentence
is used as the text embedding output by the word sense ex-
ample encoder.

Next, the quantum recognition method is implemented us-
ing the quantum-like model with the quantum-inspired con-
straint mechanism:

• V definitions
k and V examples

k are constructed as quantum
states by the normalization function SSN(·),

|ψdefinitions
k ⟩ = SSN(V definitions

k ) (21)

and
|ψexamples

k ⟩ = SSN(V examples
k ); (22)

• they are constructed as a superposition state by Eq. (13),

|Ψdef+exm
k ⟩ = ε1k|ψ

definitions
k ⟩+ ε2k|ψ

examples
k ⟩ (23)

where ε1k = sin(εk), ε2k = cos(εk), and εk ∈ R is ob-
tained by V definitions

k and V examples
k through a linear

layer of the neural network;

• V target is constructed as a measurement operator by the
normalization function SSN(·) and Eq. (15),

|ϕtarget⟩ = SSN(V target) (24)

and
M target

+ = |ϕtarget⟩⟨ϕtarget| (25)
where “+” refers to the observations that the target word
belongs to the corresponding word sense definition;

• finally, the similarity score of each word sense under the
quantum recognition method is calculated through the
quantum-like model Eq. (12),

ScoreQuantum
k = p(M target

+ ; |Ψdef+exm
k ⟩). (26)

Model Training
We train QiWSD by optimizing the similarity scores of the
word senses obtained by traditional and quantum recogni-
tion methods,

Scorek = a · ScoreTraditional
k + b · ScoreQuantum

k , (27)

through cross-entropy loss,

Loss(Score, index) (28)

= − log

(
exp(Score[index])∑
i=1 exp(Score

[i])

)
= −Score[index] + log

∑
i=1

exp(Score[i]),

where a, b ∈ R are the weights of each recognition method,
Score = [Score1, Score2, ..., Scorek, ...], and index is the
index of the candidate list of the word senses.

Experiments
The following questions will be answered through experi-
mental analysis:
• Whether the WSD system based on the quantum-like

model can effectively improve the overall performance
of the system is verified by standard and data-enhanced
evaluation experiments;

• Whether the spatial geometry constraint mechanism for
non-homologous data can effectively enhance the recog-
nition ability of LTSs is verified by ablation experiments;

• Whether the system has effective generalization perfor-
mance for other languages is verified by the latest cross-
lingual datasets.

Datasets and Model Settings
Datasets: The standard evaluation experiments of Qi-
WSD are constructed by using the WSD evaluation frame-
work proposed by Navigli et al. (Navigli, Camacho-
Collados, and Raganato 2017); the data-enhanced evalu-
ation experiments are constructed by adding the training
set WNGT2. The training set is SemCor3, the development
set is SemEval-07 (SE7; (Pradhan et al. 2007)), and the test

2https://wordnetcode.princeton.edu/glosstag.shtml
3http://lcl.uniroma1.it/wsdeval/training-data



WSD Systems Dev set Test sets Concatenation of all test sets
SE7 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

Standard Evaluation Experiments:
EWISE (ACL; Kumar et al., (2019)) 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8
LMMS (ACL; Loureiro et al., (2019)) 68.1 76.3 75.6 75.1 77.0 – – – – 75.4
SREF (EMNLP; Wang et al., (2020)) 72.1 78.6 76.6 78.0 80.5 80.6 66.5 82.6 84.4 77.8
ARES (EMNLP; Scarlini et al., (2020b)) 71.0 78.0 77.1 77.3 83.2 80.6 68.3 80.5 83.5 77.9
BEM (ACL; Blevins et al., (2020)) 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
EWISER (ACL; Bevilacqua et al., (2020)) 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3
SyntagRank (ACL; Scozzafava et al., (2020)) 59.3 71.6 72.0 72.2 75.8 – – – – 71.2
COF (EMNLP; Wang et al., (2021)) 69.2 76.0 74.2 78.2 80.9 80.6 61.4 80.5 81.8 76.3
ESR (EMNLP; Song et al., (2021)) 75.4 80.6 78.2 79.8 82.8 82.5 69.5 82.5 87.3 79.8
Z-Reweighting (ACL; Su et al., (2022)) 71.9 79.6 76.5 78.9 82.5 – – – – 78.6
Quantum-inspired Systems
QWSD (RANLP; Tamburini, (2019)) – 70.5 69.8 69.8 73.4 73.6 54.4 77.0 80.6 70.6
DRWSD (CIKM; Zhang et al., (2022b)) 74.7 80.8 78.0 80.0 82.7 82.7 69.5 82.9 86.6 80.4
QiWSDbase 74.8 81.0 79.3 80.8 82.7 83.7 71.5 82.8 87.6 80.8
QiWSDlarge 75.2 82.5 80.5 81.2 83.2 84.2 71.7 83.0 87.7 81.8
Data-enhanced Evaluation Experiments:
SparseLMMS (EMNLP; Berend, (2020)) 73.0 79.6 77.3 79.4 81.3 – – – – 78.8
EWISER (ACL; Bevilacqua et al., (2020)) 75.2 80.8 79.0 80.7 81.8 81.7 66.3 81.2 85.8 80.1
ESR (EMNLP; Song et al., (2021)) 77.4 81.4 78.0 81.5 83.9 83.1 71.1 83.6 87.5 80.7
QiWSDbase 75.0 81.8 79.5 81.0 83.0 84.0 72.2 82.8 87.6 81.1
QiWSDlarge 75.4 83.3 80.8 81.5 83.9 85.3 73.0 83.0 87.7 82.1

Table 1: F1-score (%) on the English all-words WSD task. The comparison systems are divided into two groups: those under
the standard evaluation experiments (i.e., using only SemCor) and those under the data-enhanced evaluation experiments (i.e.,
using SemCor and WNGT). SOTA performance is underlined compared to QiWSDbase and bold compared to QiWSDlarge.

sets include Senseval-2 (SE2; (Edmonds and Cotton 2001)),
Senseval-3 (SE3; (Snyder and Palmer 2004)), SemEval-13
(SE13; (Navigli, Jurgens, and Vannella 2013)), SemEval-15
(SE15; (Moro and Navigli 2015)), and the concatenation of
all test sets (ALL).

Note that the candidate list of word senses includes all
word sense definitions in WordNet 3.0. For the case where
there are multiple word sense example sentences, the first
one is selected by default; for the case where there is no
word sense example sentence, the training text is used in-
stead. Evaluation metrics and other unlisted information are
subject to the settings of the evaluation framework.

Model Settings: The hardware platform deployed by
QiWSD is Ubuntu 18.04, which installs six Tesla P40
GPUs. The development platform is Python 3.6, and the
learning framework is Pytorch 1.8. WordNet 3.0 is pro-
vided by NLTK 3.5. Versions bert-base-uncased and bert-
large-uncased of BERT are provided by Transformers
4.5. QiWSD based on bert-base-uncased and bert-large-
uncased are called QiWSDbase and QiWSDlarge respec-
tively. Learning rate, epoch and batch size of QiWSD are
{1e-5, 5e-6, 1e-6}, 20 and 4 respectively. Other hyperpa-
rameters not listed will be given in the published code.

Baselines
The comparison systems of the standard evaluation ex-
periments select the related work of the past four years
as the baselines, including EWISE (Kumar et al. 2019) and
LMMS (Loureiro and Jorge 2019) in 2019, SREF (Wang and
Wang 2020), ARES (Scarlini, Pasini, and Navigli 2020b),

BEM (Blevins and Zettlemoyer 2020), EWISER (Bevilac-
qua and Navigli 2020) and SyntagRank (Scozzafava et al.
2020) in 2020, COF (Wang, Zhang, and Wang 2021)
and ESR (Song et al. 2021) in 2021, Z-Reweighting (Su
et al. 2022) in 2022. In addition, QWSD (Tamburini 2019)
and DRWSD (Zhang et al. 2022b), which is also based
on quantum theory, is selected. The comparison systems
of the data-enhanced evaluation experiments include
SparseLMMS (Berend 2020), EWISER (Bevilacqua and
Navigli 2020) and ESR (Song et al. 2021). The experimen-
tal results of the above systems are all taken from the data
published in the original papers.

Results and Analysis
The results of the standard and data-enhanced evaluation ex-
periments are shown in Tab. 1.

From the perspective of overall performance, QiWSD
outperforms the comparison systems in the standard evalua-
tion experiments; QiWSD partially outperforms the compar-
ison systems in the data-enhanced evaluation experiments.
The reason for this phenomenon is that the training samples
of LTSs are scarce under the standard experiment setting, but
a certain number of training samples are provided under the
data-enhanced experiment setting. It is conceivable that im-
proving the weak position of LTSs by increasing the amount
of data is directly effective for improving the recognition of
LTSs. From the gap between the result values, QiWSD does
not have a big gap with the comparison systems. The rea-
son is that the number of LTSs is relatively small, and it is
difficult to have a significant gap.



Models Dev set Test sets
SE7 SE2 SE3 SE13 SE15 ALL

Dataset: SemCor
QiWSD+

base 74.8 81.0 79.3 80.8 82.7 80.8
QiWSD–

base 71.1 77.7 75.3 76.3 78.0 77.7
Dataset: LTS
QiWSD+

base 51.0 52.3 48.6 50.1 51.5 49.3
QiWSD–

base 33.3 37.7 35.0 35.9 37.6 34.9

Table 2: Experimental results of the ablation experiments
under the original (namely SemCor) and LTS datasets.

From the perspective of detailed performance, the result
on the development set is suboptimal and the result on the
test set ALL is optimal, indicating that QiWSD does not
overfit the training data and has good generalization ability.
The poor performance on the test sets Adj. and Adv. is due
to the fact that there are relatively few LTSs in adjectives
and adverbs, so QiWSD, which has the ability to recognize
LTSs, cannot give full play to its advantages.

It should be emphasized that compared with the quantum-
inspired systems QWSD and DRWSD, QiWSD is superior
to the comparison systems in various indicators, indicating
that it has certain competitiveness.

Ablation Study under LTS Datasets

Datasets: The datasets of the standard evaluation experi-
ment setting and the constructed LTS datasets are used to
carry out the ablation study. LTSs in the training set, devel-
opment set and test sets of standard evaluation experiments
are extracted and constructed as corresponding datasets. We
refer to the word senses with less than three samples as
LTSs.

Model Settings: Based on QiWSDbase, the model that
deletes the component of the quantum recognition method is
called QiWSD–

base; the model that retains the component of
the quantum recognition method is called QiWSD+

base, which
is the original model. Other information not listed remains
the same as the above model settings.

Result Analysis: The experimental results are shown in
Tab. 2, and the analysis is as follows:

• On the original datasets, the results of QiWSD–
base are ob-

viously lower than those of QiWSD+
base, which shows that

the quantum recognition method is valuable and helpful
to the overall performance of the WSD system. The rea-
son for the gap of 3-4 percentage points in the result val-
ues is that the proportion of LTSs is relatively small.

• On the LTS datasets, the results of QiWSD–
base are also

significantly lower than those of QiWSD+
base, indicating

that for the recognition of LTSs, the role of the quantum
recognition method is significant. This is corroborated by
a gap in the result values of around 15 percentage points.

Figure 3: Experimental results of XLMR-Base (which re-
sults from data published by the evaluation framework),
QiWSD+

base and QiWSD–
base under the cross-lingual datasets.

Experiments under Cross-Lingual Datasets
The generalization ability of QiWSD in other languages is
verified under the latest cross-lingual datasets4 proposed by
Pasini et al. (Pasini, Raganato, and Navigli 2021). The per-
formance in minority languages can also reflect the role of
the quantum-like model from the side. The experimental
models are QiWSD+

base and QiWSD–
base proposed by ablation

experiments. The comparison model, XLMR-Base (Con-
neau et al. 2020), is the model used in the original pa-
per. The encoders of the model are implemented by bert-
base-multilingual-cased of BERT. Note that since the cross-
lingual datasets are constructed based on BabelNet5, the
glosses and example sentences in this section are from Ba-
belNet.

The experimental results are shown in Fig. 3. From the
overall performance, QiWSD+

base is better than XLMR-Base
to a certain extent and QiWSD+

base is definitely better than
QiWSD–

base, which shows that QiWSD has a certain gener-
alization ability.

Conclusions
For long-tail WSD, the word sense definitions are limited,
and it is difficult to obtain clear and easily distinguish-
able representations. Researchers propose to expand multi-
source data to deal with it, but the unavoidable assumption
is homogeneous data. This paper proposes a quantum-like
model that simultaneously fuses representations obtained
from homologous and non-homologous data, which means
that the model has a stronger tolerance for multi-source data.
The WSD system constructed based on the quantum-like
model is verified under the WSD evaluation framework, the
constructed LTS datasets and the cross-lingual datasets, and
the experimental results show its effectiveness.

In future work, its internal mechanism and applicable
fields will be further clarified. At the same time, systems
based on the quantum-like model are constructed and veri-
fied on other tasks.

4https://sapienzanlp.github.io/xl-wsd/
5https://babelnet.org/
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