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Abstract

Multilayer Perceptron (MLP) is a simple practice of Neural
Network (NN) and the cornerstone of research and develop-
ment of deep learning. Each neuron is connected to all neu-
rons in the previous layer and implements a non-linear map-
ping through activation functions. MLP can learn complex
non-linear relationships among features through the superpo-
sition of multiple hidden layers, but it still cannot discover
the inherent strong correlation among features. The reason is
that each neuron uses a simple weighted summation method
to organize all the neurons in the previous layer. Inspired by
quantum theory, this paper builds a non-linear NN layer that
can mine strong correlations among features based on multi-
body quantum systems, and then constructs a multi-layer per-
ceptron, called Quantum-inspired MLP (QiMLP). It is con-
ceivable that QiMLP will have important inspirational sig-
nificance in reshaping machine learning, deep learning and
large language models. We theoretically analyzed the basis
for QiMLP to mine strong correlations among features, and
implemented experiments on multiple classic deep learning
datasets. Experimental results verify that QiMLP not only
learns strong correlations among features, but also signifi-
cantly reduces the number of parameters with hundreds of
times improvement.

Introduction
Multilayer Perceptron (MLP) realizes modeling of non-
linear relationships through non-linear mapping of activa-
tion functions (Popescu et al. 2009), and learns more ab-
stract and advanced feature representations through the com-
bination of multiple neuron layers, which can capture deeper
structures and patterns in the data (Murtagh 1991). Although
MLP is a simple practice of traditional neuron layers, it
has important application value and superior performance
in specific tasks (Kruse et al. 2022), and is the cornerstone
of research and construction of Machine Learning, Deep
Learning and Large Language Models.

However, the weighted summation method used by neu-
rons in each layer to fuse the features output by neurons
in the previous layer makes it difficult to learn the strong
correlation (Jiang et al. 2010; Becke 2013; Ceravolo et al.
2021) and cannot capture the intrinsic relationship among
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features (Zhang et al. 2020). The method only assigns a
certain weight value to the importance of the features and
adds the involved features. In the real world, there are gener-
ally explicit or implicit strong internal connections between
the characteristics of things, such as causal relationships,
strong statistical correlations, etc. Therefore, building a neu-
ron layer that can mine strong correlations among features
is more conducive to capturing the real relationships be-
tween the characteristics of things, and then implementing
more effective decisions. In addition, machine learning mod-
els based on traditional neuron layers, such as deep learning
models and large language models, have huge parameters
that need to be learned and require a large amount of com-
puting resources during the training process, which have be-
come a bottleneck in the development of Artificial Intelli-
gence (AI) (Lu 2019).

For mining strong correlations among features, re-
searchers have not found a suitable solution to control the
strong correlation, so they try to learn a disentangled rep-
resentation (Higgins et al. 2018; Wang et al. 2022) method
that is independent among features, thereby reducing the in-
terference of strong correlations among features on down-
stream tasks. The most representative work among them is
the disentangled representation method based on the Varia-
tional Autoencoder (VAE), such as beta-VAE (Higgins et al.
2016) and FactorVAE (Duan et al. 2022). For reducing
the number of parameters of neural network models, re-
searchers have proposed methods in recent years including
model sparsification (also called model pruning) (Zhou et al.
2021), model quantization (Zhou et al. 2018), knowledge
distillation (Gou et al. 2020), tensor decomposition (Ra-
banser, Shchur, and Günnemann 2017), etc., to achieve
model compression and reduce the number of parameters.

In quantum theory, multi-body quantum systems (Stasiuk
2021; Zhang et al. 2022a) can characterize strong relation-
ships among characteristics of systems (Fetter, Walecka, and
Kadanoff 1971; Zhang, He, and Guo 2023), and this rela-
tionships includes not only statistical correlations in clas-
sical world, but also non-classical correlations in quantum
world (Holevo and Ballentine 1982; Zhang et al. 2024). In
other words, the formal framework of quantum mechanics
can describe the strong correlation between the characteris-
tics of things. What needs to be emphasized here again is
that the strong correlation in this paper does not specifi-



cally refer to non-classical or quantum-like relationships
between the characteristics of things, such as quantum
non-locality, but refers to a strong statistical correlation
between the characteristics, such as causal relationship.

This paper leverages the framework of quantum mechan-
ics and refers to the multi-body quantum system to reshape
the basic components of NN, that is, the neuron layers, and
further build MLP with practical application value, called
Quantum-inspired MLP (QiMLP). Specifically, one or more
weight matrices obtained by the Kronecker product (Brox-
son 2006) operation is applied to the input tensor of the neu-
ron layer, a bias term obtained by the Kronecker product
operation is added, and finally an activation function is ap-
plied. The purpose of the Kronecker product operation is to
obtain a matrix that can operate a multi-body quantum sys-
tem. The purpose of applying multiple matrices obtained by
the Kronecker product operation is to increase the number of
parameters of the neuron layer, because the Kronecker prod-
uct operation will cause the parameters to decrease expo-
nentially, resulting in the problem of too few parameters. Fi-
nally, we theoretically analyzed the basis for QiMLP to mine
strong correlations among features, and implemented exper-
iments on multiple classic deep learning datasets. Experi-
mental results verify that QiMLP not only learns strong
correlations among features, but also reduces the num-
ber of parameters hundreds of times.

The contributions can be summarized as follows:

• Based on the multi-body quantum system, a neuron layer
that can mine the strong correlations among features is
constructed;

• Based on the constructed neuron layer, a multi-layer per-
ceptron with practical application value is built, which
reduces the number of model parameters hundreds of
times;

• Finally, we theoretically analyzed the basis for the con-
structed neuron layer to mine strong correlations, and ex-
perimentally verified the effectiveness of the constructed
multi-layer perceptron.

Related Work
Strong Correlation Mining
Junwei et al. (Zhang et al. 2020) studied the significance
of the strong statistical correlations revealed by quantum
entanglement in the field of machine learning. This work
completes the learning of strong statistical correlation by
constructing a learnable measurement operator to measure
the fixed maximum entangled state. The advantage of this
work is that the maximum entangled state is directly used
as the measured quantum state, which can effectively en-
sure the existence of strong correlation in the quantum sys-
tem (Zhang et al. 2021, 2022b,c). In addition, researchers
have gone to another extreme, trying to learn disentangled
representations to obtain a description of features that are
independent of each other. It directly abandons the use of
strong correlation to avoid interference caused by unrea-
sonable use of strong correlation on downstream tasks. The
most representative work among them is the disentangled

representation method based on the Variational Autoencoder
(VAE), such as beta-VAE (Higgins et al. 2016) and Factor-
VAE (Duan et al. 2022).

Compared with the work of Junwei et al. (Zhang et al.
2020), our work is more general and can be used to obtain
representations with strong correlation and applied to down-
stream tasks. In addition, our work does not forcefully in-
troduce strong correlations through quantum entanglement
states, but naturally learns the strong correlations that al-
ready exist in data features, such as causal relationships,
strong statistical correlations, etc. Compared with disentan-
gled representation, our work can also be used as a way to
obtain representation, but the difference is that we go to an-
other extreme.

Parameter Compression
With the popularity of large language models, research on
model parameter compression has practical significance.
Researchers have proposed methods in recent years to
achieve model compression and reduce the number of pa-
rameters. Model sparsification (Zhou et al. 2021), also called
model pruning, reduces the number of parameters of the
model by removing redundant connections and neurons,
thereby reducing the storage and computing overhead of
the model. Among them, the pruning algorithm is a com-
monly used neural network compression algorithm. Model
sparsification also includes gradient sparsification, activa-
tion function sparsification, etc. Model quantization (Zhou
et al. 2018) reduces the storage and computing overhead of
the model by reducing the number of bits in the model pa-
rameters. Knowledge distillation (Gou et al. 2020) transfers
the knowledge of a complex model (teacher model) to a sim-
plified model (student model), thereby reducing the number
of parameters and calculations of the model. Tensor decom-
position (Rabanser, Shchur, and Günnemann 2017) reduces
the number of parameters and calculations of the model by
decomposing the weight matrix of the model into the prod-
uct of multiple low-rank matrices.

Among the above model parameter compression methods,
tensor decomposition has the most similarity with our work.
Tensor decomposition technology hopes to extract the most
important information or main components in the original
data by decomposing tensors, while our work attempts to
learn the main information or important components through
multiple small weight matrices.

Methodology
Quantum-inspired MLP
The classic MLP is a feedforward NN model (Almeida
2020), which consists of multiple neuron layers, including
an input layer, one or more hidden layers and an output
layer. MLP can learn more complex feature representations
through the superposition of multiple hidden layers, thereby
improving the expression ability of the model. Each neu-
ron layer is connected to all neurons in the previous layer
and implements nonlinear mapping through a combination
of weights, biases, and activation functions. Assume that the



current neuron layer has N neurons, and each neuron out-
puts a value yi ∈ R, then the output of this layer can be
expressed as Y = [y1, y2, ..., yi, ...]

T . Similarly, assuming
that the previous layer has M neurons, and each neuron out-
puts a value xi ∈ R, the output of this layer can be expressed
as X = [x1, x2, ..., xi, ...]

T . Since the output of the previous
layer is the input of the current layer, and non-linear map-
ping is achieved through a combination of a weight matrix
W ∈ RN×M , a bias vector B ∈ RN×1, and an activation
function f(·), it can be formally described as

Y = f(WX + B). (1)

The activation function should be selected appropriately ac-
cording to the characteristics of the specific task. Usually
the activation function ReLU(·) will be used in the hidden
layer, and the activation function Softmax(·) will be used
in the output layer during classification tasks.

It can be seen from Eq. (1) that the neurons in the clas-
sic neuron layer use a weighted summation method to inte-
grate the output of all neurons in the previous layer. In this
method, each element to be learned in the weight matrix is
only related to the output of one neuron in the previous layer.
It is difficult to learn strong correlations such as causal rela-
tionships and strong statistical correlation among the outputs
of neurons in the previous layer. In addition, the weight ma-
trix W has a serious over-configuration problem relative to
the input X , that is, the number of parameters that need to
be learned is much more than the number of features. Sim-
ilarly, the bias term B also has this problem. It should be
emphasized that the above problems exist for all deep learn-
ing models based on classic neural network layers.

The quantum-inspired MLP redesigns the strategy of
constructing weight matrices and biases, enabling it to have
the capabilities of strong correlation mining and parame-
ter compression. We use the Kronecker product (Broxson
2006) to construct an operator that can act on a multi-body
quantum system. In this paper, the operator is regarded as
a weight matrix acting on the input of the neurons. Assum-
ing that the input of the neuron layer is a NM -dimensional
vector X ∈ RNM×1, that is, the number of neurons in the
previous layer is NM , the reconstructed weight matrix can
be expressed as

W =

M⊗
i

W i = W 1 ⊗W 2 ⊗ · · · ⊗W i ⊗ · · ·, (2)

where W i ∈ RN×N , and the operator “⊗” refers to the Kro-
necker product. Similarly, assuming that the corresponding
bias term is a NM -dimensional vector B ∈ RNM×1, the re-
constructed bias term can be expressed as

B =

M⊗
i

B i = B1 ⊗ B2 ⊗ · · · ⊗ B i ⊗ · · ·, (3)

where B i ∈ RN×1. According to this, the output Y of the
current neuron layer can be described as

Y = f

(∑
k

M⊗
i

W i
k ∗X +

M⊗
i

B i

)
, (4)

where Y ∈ RNM×1, the operator “∗” refers to the ma-
trix multiplication operation, and k refers to the number of
copies of the reconstructed weight matrix, which is used to
alleviate excessive compression of model parameters. The
activation function f(·) can refer to the classic MLP, and the
appropriate activation function can be selected according to
the specific task. At this point, the neuron layer, the basic
component of building QiMLP, has been reconstructed, and
an appropriate network model can be constructed according
to the needs of specific tasks.

It can be seen from Eq. (4) that compared to Eq. (1),
our calculation method is more complex, which is mainly
reflected in integrating multiple small weight matrices and
bias terms through the Kronecker product. From a purely
formal perspective, the elements in the weight matrix ob-
tained by the Kronecker product operation are all in the form
of the product of multiple learnable parameters. The prod-
uct form is more suitable for describing the strong correla-
tion among features than the traditional single-valued form.
In addition, the weight matrix of the same dimension ob-
tained by the Kronecker product operation can save more
parameters. From the perspective of quantum theory, the op-
erators obtained by the Kronecker product operation can be
applied to multi-body quantum systems such as composite
states and entangled states to obtain the strong correlation
between subsystems (Marinescu 2011; Galindo and Martin-
Delgado 2002). A more detailed elaboration is given in the
next section.

Theoretical Analysis
Parameter Compression Analysis: Mathematically, the
Kronecker product (Broxson 2006) is an operation between
two matrices of any dimension, which multiplies each ele-
ment in the first matrix by the second complete matrix.
Definition 1. Let A be a (m×n)-dimensional matrix and B
be a (p×q)-dimensional matrix, then the Kronecker product
operation A⊗ B is a (mp× nq)-dimensional matrix,

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (5)

Example 1. A matrix A of (2×2) dimensions and a matrix B
of (2× 2) dimensions, then the Kronecker product operation
A⊗ B can be described as

A⊗B=

[
a11 a12
a21 a22

]
⊗
[
b11 b12
b21 b22

]
=

[
a11B a12B
a21B a22B

]
(6)

=

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 .
It can be seen from Definition 1 that obtaining a matrix

of the same size as the original weight matrix through the
Kronecker product operation can save (mp×nq−m×n−p×
q) parameters. Comparison results under real models show
that QiMLP can reduce the number of model parameters by
more than 200 times compared with the classic MLP with
the same structure and scale. This advantage will be further
expanded if multiple Kronecker products are used.



Figure 1: Correlation hierarchies for multi-body quantum
systems.

Strong Correlation Mining Analysis: Bell’s theorem is
an infeasibility theorem, also known as Bell’s inequal-
ity (Clauser and Shimony 1978). In classical theory, this in-
equality holds; in quantum theory, this inequality does not
hold. The violation of Bell’s inequality by quantum theory
means that quantum physics violates the principle of local-
ity or counterfactual certainty (Nielsen and Chuang 2001).
It also shows that the quantum correlation revealed by quan-
tum probability theory is stronger than the classical correla-
tion revealed by classical probability theory, which can be
described in order of decreasing strength: quantum corre-
lation ⇒ classical correlation (Peres 1997). Furthermore,
quantum theory reveals that almost all general hybrid forms
of two- or multi-body quantum systems exhibit quantum
correlations. Several levels of non-classical correlation have
been identified for the hybrid form of multi-body quan-
tum systems, as shown in Fig. 1, which can be divided in
order of decreasing strength: non-locality ⇒ steering ⇒
entanglement ⇒ general quantum correlation (Adesso,
Bromley, and Cianciaruso 2016). All these classes of non-
classical correlations can be applied to tasks that cannot
be accomplished by classical correlations (Hirvensalo and
Yakaryılmaz 2019). At this point, we can get the corollary:

Corollary 1. When the multi-body quantum system output
by the neural layer is in a hybrid form and the correlation it
contains is stronger than the classical correlation, it can be
inferred that there is a strong correlation in the multi-body
quantum system.

In quantum theory, the basis for judging that a two-body
quantum system is in a hybrid form is that the composite
system cannot be tensor decomposed (Nielsen and Chuang
2001). For example, for the composite system |AB⟩1, the
inequality |AB⟩ ≠ |A⟩ ⊗ |B⟩ does not exist. A way to de-
termine whether a multi-body quantum system is in a hybrid
form is to determine whether it has a tensor decomposition
form. In quantum information theory, mutual information

1In Dirac notation, a unit vector v⃗ and its transpose v⃗T are de-
noted as a ket |v⟩ and a bra ⟨v| respectively.

obtained using von Neumann entropy is often used to mea-
sure the total correlation of a multi-body quantum system,
the von Neumann entropy of a single-body quantum system
under the ensemble description is used to measure the clas-
sical correlation of a multi-body quantum system, and their
differences are considered to be non-classical correlations,
namely strong correlations (Vesperini, Bel-Hadj-Aissa, and
Franzosi 2022; Schindler, Safránek, and Aguirre 2020). A
detailed instruction of measuring strong correlation is pro-
vided below. The analysis of strong correlation mining by
QiMLP is given in the experimental section.

Method for Measuring Strong Correlations: In quan-
tum information theory, von Neumann entropy is an expan-
sion of the concept of Gibbs entropy of the classical sys-
tem (Jaeger 2007; Wilde 2013; Nielsen and Chuang 2001),
which is defined as

S(ρ) = −tr(ρ log ρ), (7)

where tr(·) represents the trace operation of the matrix, and
ρ refers to the density matrix form of the quantum system.
Implementing the eigenstate vector decomposition of the
density matrix ρ,

ρ =

n∑
i=1

λi|ψi⟩⟨ψi|, (8)

then the von Neumann entropy can be explicitly written as

S(ρ) = −
n∑

i=1

λi log λi. (9)

Mutual information is a measure of the total correlation
of multi-body quantum systems (Nielsen and Chuang 2001),
which in some scenarios means that for the composite sys-
tem, half of the correlation is quantum and the other half
is classical (Hirvensalo and Yakaryılmaz 2019). Based on
von Neumann entropy, the mutual information of the two-
body quantum system ρAB can be defined as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (10)

When there is no quantum correlation for a two-body quan-
tum system ρAB , there is a form of tensor decomposition,
ρAB = ρA ⊗ ρB . A two-body quantum system whose sub-
systems are independent of each other can be described as a
superposition system using an ensemble method,

ρ(A+B) =
∑

i=A,B

piρi, (11)

where pi refers to probability, and pA + pB = 1. Then
the correlation of the quantum system ρ(A+B) can be ob-
tained from the von Neumann entropy, and since it is a non-
entangled single quantum system, the correlation existing in
the quantum system can be considered as a classical corre-
lation. And when ρA and ρB exist with equal probability,
i.e., pA = pB , their classical correlation is the strongest.

At this point, non-classical strong correlation in multi-
body quantum systems can be defined as the total corre-
lation reduced by the classical correlation (Hirvensalo and



Yakaryılmaz 2019). For a two-body quantum system ρAB ,
its strong correlation can be described as

C(ρAB) = I(ρAB)− S(ρ(A+B)) (12)

= S(ρA) + S(ρB)− S(ρAB)− S(ρ(A+B)).

Experiments
This section will organize experiments to test the perfor-
mance of QiMLP in terms of accuracy of model prediction
results, parameter compression, and strong correlation min-
ing, specifically answering the following four questions: Q1.
Under similar structural design, is QiMLP better than the
baseline model in terms of accuracy of prediction results?
Q2. And to what extent can it compress the parameters of
the model? Q3. Can QiMLP mine strong correlations among
features and improve the prediction accuracy of the model
accordingly? Q4. Can QiMLP be generalized to more tasks
and adapted to wider fields?

Analysis of External Performance (RQ1 & RQ2)
Datasets: MINST2 and CIFAR-103 are widely used
datasets for testing new models in the early days of deep
learning. MINST is a handwritten digit picture dataset con-
taining a training set of 60,000 pictures and a test set of
10,000 pictures, and each sample is a 28×28 pixel gray mat-
ter picture of 0∼9 (LeCun et al. 1998). CIFAR-10 is a real
object image dataset containing a training set of 50,000 im-
ages and a test set of 10,000 images, and each sample is
a 32×32 pixel color image divided into 10 categories, with
6,000 images in each category (Krizhevsky 2009). The train-
ing set of the above datasets is divided into our training set
and development set at a ratio of 8:2, and their test set is
directly used as our test set. The measurement metrics of
experimental results all adopt accuracy rate.

Settings: Under the MNIST dataset, the model structure
of the control group is a classic MLP composed of three
neuron layers. The number of neurons in each layer is 784,
the activation function GELU(·) is added to the first two
layers, and the function Dropout(·) is added to the third
layer. The model structure of the experimental group only
modified the weight matrices and bias terms of the con-
trol group model into the form of two-body, three-body,
and four-body quantum systems, and ensured that the di-
mensions of the weight matrices and bias terms of the ex-
perimental group model are the same as those of the con-
trol group model. Under the two-body quantum system, the
weight matrix is composed of (28×28) and (28×28) dimen-
sional matrices; Under the three-body quantum system, the
weight matrix is composed of (7× 7), (7× 7) and (16× 16)
dimensional matrices; Under the four-body quantum system,
the weight matrix is composed of (4 × 4), (4 × 4), (7 × 7)
and (7 × 7) dimensional matrices. When forming a com-
posite matrix from multiple sub-matrices, our principle of
selecting each sub-matrix is to ensure that all sub-matrices
are maximized as much as possible. The construction meth-
ods of the bias terms of the two-body, the three-body and

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/ kriz/cifar.html

Figure 2: The accuracy of experimental results and the num-
ber of model parameters of the classic MLP and the QiMLP
under the MNIST dataset.

Figure 3: The accuracy of experimental results and the num-
ber of model parameters of the QiMLP at different k values
under the MNIST dataset.

the four-body quantum systems are similar to those of the
weight matrices. The specific construction method is shown
in Eq. (4). In addition, the experimental group model does
not add the function Dropout(·) to the third layer.

Under the CIFAR-10 dataset, the model structure of the
control group is a classic MLP composed of five neuron
layers. The model structure of the experimental group is
also designed with reference to the model structure of the
control group, and the construction method is the same as
the construction method of the experimental group model
under the MNIST dataset. The activation functions of the
models in the CIFAR-10 dataset are consistent with those in
the MNIST dataset.

For settings such as the operating platform and hyperpa-
rameters, please refer to https://qnlp.github.io/.

Experimental Results and Analysis: Under the MNIST
dataset, the experimental results of the experimental group
model (QiMLP under two-body, three-body, and four-body
quantum systems, that is, 2b-Qi, 3b-Qi, 4b-Qi in the dia-
gram) and the control group model (classic MLP, that is,
MLP in the diagram) are shown in Fig. 2. The left picture
shows the accuracy of the model prediction results, and the
right picture shows the number of model parameters. From
the perspective of accuracy of prediction results, QiMLP
based on the two-body quantum system is far better than the
control group model; QiMLP based on the three-body quan-
tum system is similar to the control group model; QiMLP
based on the four-body quantum system is not as good as the
control model. From the perspective of the number of model
parameters, QiMLP based on various quantum system con-
figurations is far less than the number of parameters used by
the control model. Combined with the number of model pa-
rameters, the accuracy analysis of the prediction results of
QiMLP constructed by three-body and four-body quantum
systems shows that the main reason for their low accuracy is



Figure 4: The accuracy of experimental results and the num-
ber of model parameters of the classic MLP and the QiMLP
under the CIFAR-10 dataset.

Figure 5: The accuracy of experimental results and the num-
ber of model parameters of the QiMLP at different k values
under the CIFAR-10 dataset.

that the number of parameters of the models are too small,
which is not enough to learn better performance. It can be in-
ferred from this conclusion that QiMLP has strong parame-
ter compression capabilities, but in specific response scenar-
ios, the information capacity of the model needs to be con-
sidered and parameters cannot be excessively compressed.
The index k in Eq. (4) refers to the number of repetitions
of the reconstructed weight matrix, which is used to allevi-
ate excessive compression of model parameters. The experi-
mental results with different values of k are shown in Fig. 3.
Overall, when k takes a larger value, the model parameters
increase and the prediction results of the model improve ac-
cordingly. However, the performance of QiMLP based on
the four-body quantum system is average. The main reason
is that the number of parameters is still insufficient and the
model parameters are over-compressed.

Under the CIFAR-10 dataset, the experimental results of
the experimental group model and the control group model
are shown in Fig. 4. The experimental results are generally
similar to those under the MNIST dataset, indicating that the
parameter compression capabilities of QiMLP also perform
well on larger datasets and the most complex tasks. The in-
dex k in Eq. (4) refers to the number of repetitions of the
reconstructed weight matrix, which is used to alleviate ex-
cessive compression of model parameters. The experimen-
tal results with different values of k are shown in Fig. 5.
Overall, when k takes a larger value, the model parameters
increase, but the prediction results of the models do not im-
prove accordingly. The main reason is that the number of
parameters is still insufficient and the model parameters are
over-compressed.

For analysis of training efficiency, learning speed, and
main hyperparameters, see https://qnlp.github.io/.

Figure 6: The proportion of classical correlations (CC) and
mined strong correlations (SC) in each neuron layer of
QiMLP under the MNIST dataset.

Figure 7: The proportion of classical correlations (CC) and
mined strong correlations (SC) in each neuron layer of
QiMLP under the CIFAR-10 dataset.

Analysis of Internal Conditions (RQ3)
Based on the formula for calculating strong correlation given
in Eq. (12), this section will statistically analyze whether
QiMLP can mine strong correlations among features during
the implementation process. Since it is difficult for multi-
body quantum systems to calculate mutual information, that
is, the total correlation of multi-body quantum systems, this
section only analyzes QiMLP based on two-body quantum
systems. We trained a neural network to obtain the Kro-
necker product form ρA ⊗ ρB of the output vector ρAB of
each neuron layer of QiMLP, that is, let ρA ⊗ ρB be only
as similar as possible to ρAB . Among them, ρA, ρB and
ρAB are all represented by matrices of vectors under the
computational basis. After obtaining the subsystem of each
neuron layer in QiMLP based on two-body quantum sys-
tems, its strong correlation can be calculated with the help
of Eq. (12). The statistical results of the strong correlation
of each neuron layer of QiMLP in the MNIST test set and
the CIFAR-10 test set are shown in Fig. 6 and Fig. 7 respec-
tively. Since the last layer is the output layer, the dimension
is determined by the prediction task, and it is not suitable for
counting its strong correlation.

Comparing the statistical results of strong correlations be-
tween the first neuron layer and the second neuron layer
in Fig. 6, it can be seen that there are more strong corre-
lations mined in the second layer than in the first layer. This
shows that QiMLP can mine strong correlations among fea-
tures, and as the number of hidden layers of the model in-



creases, the strong correlations mined tend to gradually in-
crease. This phenomenon also appears in QiMLP under the
CIFAR-10 dataset. The above experimental results illustrate
that the core reason why QiMLP can still achieve good pre-
diction results despite significantly compressing model pa-
rameters is that it mines strong correlations among features,
and the strong correlations mined can directly determine the
accuracy of model prediction results.

Analysis of Model Potential (RQ4)
Datasets: The movie review dataset IMDb4 is a widely
used natural language processing dataset that contains
50,000 highly polarizing reviews from the Internet Movie
Database (Pal, Barigidad, and Mustafi 2020). The dataset is
divided into 25,000 reviews for training and 25,000 reviews
for testing, and both the training set and the test set con-
tain 50% positive reviews and 50% negative reviews respec-
tively. Reviews range in length from 900 to 1700, with an av-
erage length of 1100, and are preprocessed into the form of
words and punctuation marks. NewsGroups5 is one of the in-
ternational standard datasets used for text classification, text
mining and information retrieval research (Lang 1995). The
dataset collects about 20,000 newsgroup documents, evenly
divided into 20 newsgroup collections with different topics.
The dataset is a 20-category classification dataset, in which
the training set and test set are divided into proportions of
75% and 25%. The training set of the above datasets is di-
vided into our training set and development set at a ratio of
8:2, and their test set is directly used as our test set. The mea-
surement metrics of experimental results all adopt accuracy
rate.

Settings: Under the IMDb dataset, the model structure
of the control group is built based on the pre-trained lan-
guage model BERT (Koroteev 2021) and three neuron lay-
ers. Among them, the model BERT is mainly responsible
for the extraction of text features, and MLP constructed
with three neuron layers is responsible for feature fusion
and final emotion classification. Model BERT uses the
bert-base-uncased version. The number of neurons in each
layer is 768, the activation function GELU(·) is added to
the first two layers, and the function Dropout(·) is added
to the third layer. The model structure of the experimental
group only modified the weight matrices and bias terms of
the classical MLP of the control group model into the form
of a two-body quantum system, and a three-body quantum
system, and ensured that the weight matrices and bias terms
of the experimental group model are the same as the control
group model. The specific construction method is shown in
Eq. (4). In addition, the experimental group model does not
add the function Dropout(·).

Under the NewsGroups dataset, the model structure of the
control group is an MLP composed of five neuron layers,
and the input text uses the traditional TF-IDF method to
obtain its word representation. The model structure of the
experimental group is also designed with reference to the

4https://developer.imdb.com/non-commercial-datasets/
5http://qwone.com/ jason/20Newsgroups/

Figure 8: The accuracy of experimental results of the clas-
sic MLP and the QiMLP on the IMDb and NewsGroups
datasets.

model structure of the control group, and the construction
method is the same as the construction method of the exper-
imental group model under the MNIST dataset. The activa-
tion functions of the models in the NewsGroups dataset are
consistent with those in the MNIST dataset.

For settings such as the operating platform and hyperpa-
rameters, please refer to https://qnlp.github.io/.

Experimental Results and Analysis: Under the IMDb
dataset, the experimental results of the experimental group
model (QiMLP under two-body, and three-body quantum
systems, that is, 2b-Qi, 3b-Qi in the diagram) and the control
group model (classic MLP, that is, MLP in the diagram) are
shown in Fig. 8. From the performance of the experimen-
tal results, QiMLP based on the two-body quantum system
is better than the classical MLP, while QiMLP based on the
three-body quantum system is similar to the classical MLP,
indicating that QiMLP can still achieve good performance
on larger-scale natural language processing datasets.

Under the NewsGroups dataset, the experimental results
of the experimental group model and the control group
model are shown in Fig. 8. From the performance of the ex-
perimental results, QiMLP based on the two-body quantum
system is better than the classical MLP, while QiMLP based
on the three-body quantum system is similar to the classical
MLP, indicating that QiMLP can still achieve good perfor-
mance on more complex natural language processing tasks.

Conclusion
Deep learning models and large language models based on
neural networks have achieved unprecedented results in the
field of artificial intelligence, but they also have inherent
limitations, such as parameter overload and poor learning
ability of strong correlations among features. Inspired by
quantum theory, this paper constructs a neuron layer with
model parameter compression and strong correlation min-
ing. Compared with the traditional neuron layer, the neuron
layer proposed in this paper can achieve hundreds of times
of parameter compression, and can mine strong correlations
among features to improve the representation ability of the
neuron layer. In addition, we built a Multi-Layer Perceptron
(MLP) based on the neuron layer, called quantum-inspired
MLP (QiMLP), to implement verification in more tasks and
fields. Experimental results in image classification, text clas-
sification and text emotion recognition show that QiMLP not
only achieve a large proportion of parameter compression,
but also achieve better prediction results.
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duction to Tensor Decompositions and their Applications in
Machine Learning. ArXiv, abs/1711.10781.
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