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ABSTRACT
The long-tailed distribution, also called the heavy-tailed distribu-
tion, is common in nature. Since both words and their senses in
natural language have long-tailed phenomenon in usage frequency,
the Word Sense Disambiguation (WSD) task faces serious data
imbalance. The existing learning strategies or data augmentation
methods are difficult to deal with the lack of training samples caused
by the single application scenario of long-tail senses, and the word
sense representations caused by unique word sense definitions.
Considering that the features extracted from the Disentangled Rep-
resentation (DR) independently describe the essential properties
of things, and DR does not require deep feature extraction and
fusion processes, it alleviates the dependence of the representa-
tion learning on the training samples. We propose a novel DR by
constraining the covariance matrix of a multivariate Gaussian dis-
tribution, which can enhance the strength of independence among
features compared to 𝛽-VAE. The WSD model implemented by the
reinforced DR outperforms the baselines on the English all-words
WSD evaluation framework, the constructed long-tail word sense
datasets, and the latest cross-lingual datasets.
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1 INTRODUCTION
The long-tailed distribution (or heavy-tailed distribution) is a ran-
dom variable distribution that is more common than the normal
distribution [53]. Its intuitive characteristic is that head classes
(categories) occupy a large number of samples, while tail classes
(categories) have only a small number of samples. Data from the real
world is difficult to be balanced and often presents an unbalanced
phenomenon [70]..

For data-driven models in the field of Machine Learning (ML),
the performance of state-of-the-art (SOTA) models degrades on the
data following the long-tailed distribution [10, 70]. The core reason
is that the training samples of the tail classes are insufficient, which
makes it difficult to extract sufficient feature information from
the limited training samples to achieve effective representations
and correct recognition. In other words, it is difficult to learn the
parameters of the model from limited training samples.

In the field of Natural Language Processing (NLP), it also faces
the challenge of model failure caused by the long-tailed distribu-
tion [64]. In this regard, researchers have proposed data augmenta-
tion methods, such as Oversampling [3], Data Weighting [30] and
Data Synthesis [38], etc., to deal with insufficient training samples.
Although the existing methods can expand the sample size, it is
difficult to provide more abundant unknown information. That is
to say, the methods simply expand the number of samples based
on known training data. In addition, some learning strategies (or
models) for insufficient training samples are also proposed, such as
Contrastive Learning [34], Generative Adversarial Networks [18]
and Pretrained Models [51], etc.

However, for the WSD task, the above data augmentation meth-
ods and learning strategies against insufficient training samples
have certain inapplicability. WSD is to assign the correct sense to
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the target word in a given context, where the candidate list of senses
is all senses listed in the dictionary [7, 45]. WSD is a lexical-level
classification task, which needs to deal with the long-tail phenome-
non of word and sense usage frequency at the same time. Its unique
characteristics are as follows:

• Most of the long-tail senses are presented in the form of
fixed collocations [46], that is, their application scenarios
are narrow. So the data augmentation method that simply
expands the number of samples cannot provide richer un-
known information.

• In addition, the definitions of word senses (namely, glosses)
are limited and fixed text descriptions in dictionaries, and
the definition texts are very strict descriptions. So it is dif-
ficult for learning strategies based on knowledge transfer
to accurately transfer comprehensive general description
information from other places.

For the above reasons, it is difficult to mechanically expand the
training sample size and definition of long-tail senses, and manual
writing requires a high cost. Thus sufficient mining of existing data
to obtain effective representations will be a correct option.

The concept of the Disentangled Representation (DR) was
proposed as early as 2013 in a representation learning article pub-
lished by Bengio et al. [5]. DR can be defined as the representation
where single latent units are sensitive to changes in single gener-
ative factors, while being relatively invariant to changes in other
factors [11]. That is to say, its goal is to learn features that are inde-
pendent of each other, and each feature focuses on describing an
independent primitive property. DR is widely used in Interpretable
Machine Learning (IML) [39, 57] and Image Processing (IP) [12, 65].
In IML, independent features not only provide the possibility to
clarify the meaning of each feature, but also further clarify what the
algorithm has learned. In IP, independent features not only indicate
the role of each feature, but also find a way to control image gener-
ation. However, the practical value of DR is much more than that,
see Ref. [54] for more. The features obtained by DR are independent
of each other, resulting in no need to learn complex correlations be-
tween features, which will greatly reduce the difficulty of learning
the representation [11, 56].

Considering that the features extracted by DR are independent of
each other, this paper leverages DR to obtain the features of single
and fixed application scenarios of long-tail senses. And considering
that DR does not require a deep feature extraction and fusion pro-
cess, which greatly alleviates the dependence of the representation
learning process on the number of training samples, this paper
leverages DR to deal with glosses to obtain the correct word sense
representations. Specifically, we first employ two pre-trained lan-
guage models to obtain representations of target words and glosses,
respectively, called general representations. Subsequently, on
the basis of the general representations, we obtain their disentan-
gled representations through the method proposed in this paper.
Finally, we calculate the similarity over the general representation
and the disentangled representation separately, and combine their
output results into the final output, that is, the probability that the
target word belongs to each word sense.

Our contributions can be summarized as follows:

• Rediscover the practical value of DR, that is, based on the
superiority of DR in alleviating the complexity of feature
extraction and fusion processes, we leverage DR to combat
insufficient training samples;

• Propose a novel method to obtain DR by constraining the
covariance matrix of a multivariate Gaussian distribution,
which can enhance the strength of independence between
features compared to 𝛽-VAE;

• Implement a WSD model using the reinforced DR, and val-
idate the effectiveness on the English all-words WSD eval-
uation framework, the constructed long-tail sense datasets
and the latest cross-lingual datasets.

2 RELATEDWORK
2.1 Long-tailed Distribution for WSD
Due to the habits and preferences of language expressions, both
words and senses in usage frequency show a severely imbalanced
distribution. For the WSD task, dealing with long-tail words and
long-tail senses caused by imbalanced distribution is the main chal-
lenge currently.

Researchers try to start directly from the data itself, and pro-
pose methods of Oversampling [72], Data Weighting [71], and Data
Augmentation [36, 66] to deal with insufficient training samples
caused by imbalanced distribution. The above methods alleviate the
problem of insufficient training samples of target words to varying
degrees, but cannot effectively deal with long-tail senses. Consider-
ing the characteristics of the description texts of the word senses
(namely glosses), researchers propose to use multiple dictionar-
ies to provide more description information of glosses, including
Wikipedia [1, 19, 20], ConceptNet [13], and IndoWordNet [8]. Con-
sidering the phenomenon of fixed collocation of long-tail senses,
researchers propose multi-lingual and cross-lingual schemes to
provide collocation information in different languages [2, 4, 23].

In addition, learning strategies or models against insufficient
training samples are also used in the WSD task, such as Meta-
Learning [22, 28], Generative Adversarial Networks [29], and Pre-
trained Models [24, 31].

2.2 Representation Methods for WSD
The importance of representations for the WSD task has been
extensively explored by Iacobacci et al. [32]. The research on rep-
resentation methods is mainly divided into two ideas: one is to
include more knowledge for the representation, and the other is to
constrain (or map) the representation to a specific space.

The methods of expanding knowledge try to include contextual
information [58, 59], multi-sense information [55], multi-language
information [23], domain information [63], or information con-
tained in pre-trained models [25], etc. into the current representa-
tions. Obviously, such methods cannot alleviate the dependence of
learned representations on training samples. Although such meth-
ods improve the overall performance of themodels, the contribution
cannot be clearly attributed to the efficient handling of long-tail
words and senses.
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The methods of imposing constraints attempt to map word or
sense vectors into a compact or continuous space to improve recog-
nition accuracy or reduce the dependence of learned representa-
tions on training samples [6, 37]. The method proposed by Kumar
et al. [37] to constrain the representation of senses in a continuous
space effectively copes with the shortage of training samples for
long-tail senses. This work also inspires us to leverage the indepen-
dence constraints between features, namely disentangled represen-
tation, to alleviate the dependence of learned representations on
training samples.

Methods that integrate external knowledge or impose internal
constraints can improve the accuracy of word sense representations
to a certain extent, but have strong requirements for transferred
knowledge. The approach adopted in this paper, namely disentan-
gled representation, focuses on fully mining the knowledge of the
training samples and does not need to rely on external assistance.

2.3 Disentangled Representation Methods
Since the concept of DR was proposed by Bengio et al. [5] in 2013,
researchers have begun to try various methods to obtain DR, among
which the most influential are implementations based on VAE (Vari-
ational Auto Encoder) [11, 14, 26] and GAN (Generative Adversarial
Networks) [15, 33], and constrained methods based on Mutual In-
formation Estimation [56].
𝛽-VAE [11] is a variant of VAE, which enhances the ability of the

VAE model to represent disentanglement. In VAE, we want to maxi-
mize the probability value of generating the true data and minimize
the KL divergence of the true and estimated posterior distributions.
In the corresponding Lagrangian function, the Lagrangian multi-
plier 𝛽 is a hyperparameter. When 𝛽 is 1, it is the standard VAE.
A higher 𝛽 value reduces the richness of the information repre-
sented by the variable space, but increases the disentanglement
ability of the representation at the same time. So 𝛽 can be used as a
balance factor between representation ability and disentanglement
ability. In addition, on the basis of 𝛽-VAE, its improved version
𝛽-TCVAE [14] is proposed.

InfoGAN [15] is an extension of GAN, which is capable of learn-
ing disentangled representations in a completely unsupervised man-
ner and is able to maximize the mutual information between latent
variables and observations for small-scale datasets. Specifically, In-
foGAN successfully disentangles writing styles from digit shapes
on the MNIST dataset, pose from the lighting of 3𝐷 rendered im-
ages, and background digits from the central digit on the SVHN
dataset. It also discovers some visual concepts that include hair
styles, presence/absence of eyeglasses, and emotions on the CelebA
face dataset.

In addition, the method based on mutual information estimation
obtains DR [56]: on the one hand, by maximizing the mutual in-
formation between the data and latent variables, and on the other
hand, by minimizing the mutual information between the common
latent variable and the exclusive latent variable, and finally achieve
the purpose of obtaining DR.

On the basis of 𝛽-VAE, we propose a novel method to obtain
disentangled representations inspired by quantum theory. Com-
pared with 𝛽-VAE, this method can further improve the level of
disentanglement between features.

3 METHODOLOGY
The principle and implementation details of obtaining DR are clari-
fied in Sec. 3.1; the WSD model implemented by this representation
is described in Sec. 3.2; the loss function and the chosen optimiza-
tion method of the model are given in Sec. 3.3.

3.1 Disentangled Representation with Strong
Constraints Among Features

From a mathematical point of view, DR is that the features of the
representation are independent of each other. For a given random
vector, the most common method to determine the strength of the
correlation between its variables is mutual information. The larger
the value of mutual information, the stronger the correlation; when
the value is equal to zero, the variables are independent of each
other [27]. Therefore, a natural idea is to employ the mutual infor-
mation of this vector as a constraint term of the objective function
to constrain the features of the representation to be independent of
each other.

Assuming that we want to obtain DR

®𝑍 = [𝑧1, 𝑧2, ..., 𝑧𝑖 , ...] ∈ R𝑛 (1)

based on the known representation

®𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑖 , ...] ∈ R𝑛, (2)

the mutual information between the features of a random vector ®𝑍 ,
I( ®𝑍 ), can be defined by the Kullback-Leibler divergence as

I( ®𝑍 ) = KL

(
𝑃1 ( ®𝑍 ) | |

∏
𝑖

𝑃2 (𝑧𝑖 )
)

(3)

where the subscripts 1 and 2 are used to distinguish different dis-
tribution functions later, 𝑃 ( ®𝑍 ) refers to the joint distribution, and∏
𝑖 𝑃 (𝑧𝑖 ) refers to the marginal distribution.
We can further assume that the probability density function of

®𝑍 is a multivariate Gaussian distribution (also called multivariate
normal distribution or joint normal distribution),

𝑃1 ( ®𝑍 ) ∼ N (®𝜇1, 𝛴) (4)

where ®𝜇1 ∈ R𝑛 is the mean vector,

®𝜇1 = E[ ®𝑍 ] (5)

=

(
E[ ®𝑧1], E[ ®𝑧2], ..., E[ ®𝑧𝑖 ], ...

)
,

and 𝛴 ∈ S𝑛×𝑛++ is the covariance matrix,

𝛴𝑖, 𝑗 = E
[
( ®𝑍𝑖 − ®𝜇𝑖 ) ( ®𝑍 𝑗 − ®𝜇 𝑗 )

]
(6)

= 𝐶𝑜𝑣 [ ®𝑍𝑖 , ®𝑍 𝑗 ] .

®𝜇1 can be obtained from the known representation ®𝑋 through a
fully connected layer (or called linear layer) in the Neural Network,

®𝜇1 = 𝑙𝑖𝑛𝑒𝑎𝑟 ( ®𝑋 ) . (7)

And 𝛴 can also be obtained from ®𝑋 ,

𝛴 =
1
𝑆

𝑆∑
𝑠

®𝑋
′𝑇
𝑠

®𝑋
′
𝑠 (8)

2571



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Junwei Zhang et al.

BERT of Glosses

Buildings for carrying on …

BERT of Target Word

They built a plant to …

[CLS] they built a plant

Disentangled

+ = Score of Sense Labels

Disentangled𝑉!!"#$%!
"#$#%&' 𝑉[)*+ ]&

"#$#%&'𝑉!!"#$%!
-./#$0 𝑉[)*+]&

-./#$0

𝑆𝑐𝑜𝑟𝑒"#$#%&'

[CLS] buildings for carrying on

𝑆𝑐𝑜𝑟𝑒-./#$0 𝑆𝑐𝑜𝑟𝑒&''

Figure 1: Schematic diagram of the model architecture. Our model consists of two BERTs to obtain embeddings for the target
word and glosses, respectively. The obtained embeddings are copied in two copies: onewith independence constraints imposed
to obtain disentangled representations, and one without any processing. The scores under the disentangled representation are
obtained by performing an inner product operation on the corresponding embeddings, the scores under the other represen-
tation are obtained in the same way, and they are added together as the final scores. The bold word plant refers to the target
word, ⊙ refers to the inner product operation, and the embeddings in the yellow box represent the obtained disentangled
representations.

where 𝑆 represents the number of vectors that make up the 𝛴 , and
®𝑋 ′
𝑠 is defined as

®𝑋
′
𝑠 = 𝑆𝑆𝑁

(
𝑙𝑖𝑛𝑒𝑎𝑟𝑠 ( ®𝑋 )

)
(9)

=
𝑙𝑖𝑛𝑒𝑎𝑟𝑠 ( ®𝑋 )√∑ (
𝑙𝑖𝑛𝑒𝑎𝑟𝑠 ( ®𝑋 )

)2
where 𝑆𝑆𝑁 (·) is a normalized function of the sum of squares. Be-
cause the covariance matrix is a positive semi-definite matrix, the
purpose of the above complex operation is to obtain a qualified
𝛴 . Through experimental analysis, it is found that the value of 𝑆
cannot be too large or too small. When it is too large, the model
is not easy to converge; when it is too small, the disentanglement
effect of the representation is not good. The specific values are
uniformly given at the model settings in the experimental section.

The reason for assuming a Gaussian distribution here is that the
distribution has two parameters, which are easy to obtain, and the
distribution is the most widespread distribution in nature. When
the covariance matrix of the multivariate Gaussian distribution is a
diagonal matrix Λ, it means that the variables are independent of
each other, according to which the marginal distribution in Eq. (3)

can also be described as a multivariate Gaussian distribution as∏
𝑖

𝑃2 (𝑧𝑖 ) ∼ N (®𝜇2,Λ) (10)

where
®𝜇2 = 𝑙𝑖𝑛𝑒𝑎𝑟 ( ®𝑋 ) (11)

and
Λ = 𝐷𝑖𝑎𝑔

(
𝑙𝑖𝑛𝑒𝑎𝑟 ( ®𝑋 )

)
. (12)

The function of 𝐷𝑖𝑎𝑔(·) is to transform a vector into a diagonal
matrix, that is, the elements of the vector are used as the diagonal
elements of the new matrix, and the other off-diagonal elements of
the matrix are set to 0.

In learning process of the model, the Kullback-Leibler divergence
of the multivariate Gaussian distributions of 𝑃1 ( ®𝑍 ) and

∏
𝑖 𝑃2 (𝑧𝑖 ),

KL

(
𝑃1 ( ®𝑍 ) | |

∏
𝑖

𝑃2 (𝑧𝑖 )
)
≈ KL

(
N(®𝜇1, 𝛴) | |N ( ®𝜇2,Λ)

)
(13)

is constrained. N(®𝜇1, 𝛴) with non-independent features tends to
be N(®𝜇2,Λ) with independent features, and finally the features
of N(®𝜇1, 𝛴) are independent of each other. At this point, we can
obtain the disentangled representation ®𝑍 by performing sampling
on the above Gaussian distributions. However, since the sampling
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operation cannot be derived and the result of sampling can be
derived, ®𝑍 can be technically expressed as

®𝑍 =
1
2

(
( ®𝜇1 + ®𝜇2) + ®𝜀 ∗ (𝑑𝑖𝑎𝑔(𝛴) + 𝑑𝑖𝑎𝑔(Λ))

)
(14)

where ®𝜀 represents the perturbation (or noise) obtained by sam-
pling from the Gaussian distribution N(0,Λ), ∗ represents bitwise
multiplication, and the function of 𝑑𝑖𝑎𝑔(·) is to obtain the diagonal
elements of a matrix. The specific method of 𝑑𝑖𝑎𝑔(·) is to extract
the diagonal elements of the matrix as a new vector. The function
of 𝐷𝑖𝑎𝑔(·) is to convert a vector to a matrix, while the function of
𝑑𝑖𝑎𝑔(·) is to convert a matrix to a vector.

In addition, the constraint term of the disentangled representa-
tion of the objective function can be obtained by calculating the
Kullback-Leibler divergence of the above multivariate Gaussian
distribution,

KL
(
N(®𝜇1, 𝛴) | |N ( ®𝜇2,Λ)

)
(15)

= E
(
log(N (®𝜇1, 𝛴)) − log(N (®𝜇2,Λ))

)
=

1
2

{
log

|Λ|
|𝛴 | + 𝑡𝑟 (Λ

−1𝛴) + ( ®𝜇2 − ®𝜇1)Λ−1 ( ®𝜇2 − ®𝜇1)𝑇 − 𝑛
}
.

In the model learning process, since obtaining the inverse of the
matrix is time-consuming and Λ is a diagonal matrix, Λ−1 can be
defined as

Λ−1 =
1
Λ

(16)

whereΛ𝑖,𝑖 ≠ 0 and 1 represents the identity matrix. Finally, the
constraint term for obtaining the disentangled representation is
defined as

KL =
1
2

{
log

|Λ|
|𝛴 | + 𝑡𝑟 (

𝛴

Λ
) + ( ®𝜇2 − ®𝜇1) ( ®𝜇2 − ®𝜇1)𝑇

Λ
− 𝑛

}
. (17)

During model training, this KL divergence will be added to the
loss function as a constraint term. The constraint term of DR of
target words and glosses are all provided by Eq. (17), except that
the corresponding parameters are selected from their respective
mean vectors and covariance matrices.

3.2 Word Sense Disambiguation Using
Reinforced DR

The overall architecture of our model is shown in Fig. 1. Our model
imitates the bi-encoder architecture proposed by Blevins et al. [9]:
one encoder (called target word encoder) is used to obtain the
embedding of the target word, the other encoder (called gloss
encoder) is used to obtain the embeddings of the glosses, and the
model is optimized for both encoders through joint training. The
reason why we also adopt the bi-encoder architecture is as follows:

• there are some differences between the text containing the
target word and the text of the glosses, while the exclusive
encoder will not ignore these differences;

• the disentangled representation proposed in this paper will
amplify these differences, while the architecture will pre-
serve them better.

Both the target word encoder and the gloss encoder are imple-
mented with BERT [21] to obtain the corresponding embeddings,
and the implementation details are as follows:

The target word encoder encodes the text containing the tar-
get word,

𝑊 = [𝑤1,𝑤2, ...,𝑤𝑖 , ...] ∋ 𝑤𝑡𝑎𝑟𝑔𝑒𝑡 (18)
where 𝑤𝑡𝑎𝑟𝑔𝑒𝑡 refers to the target word, into the corresponding
embedding

𝑉𝑊 = [𝑉𝑤1 ,𝑉𝑤2 , ...,𝑉𝑤𝑖
, ...] ∋ 𝑉𝑤𝑡𝑎𝑟𝑔𝑒𝑡

(19)

where 𝑉𝑤𝑡𝑎𝑟𝑔𝑒𝑡
refers to the embedding of the target word. Ac-

cording to the processing rules of BERT, the symbols [𝐶𝐿𝑆] and
[𝑆𝐸𝑃] are added as separators to the beginning and end of the text,
respectively,

𝑊 =

[
[𝐶𝐿𝑆],𝑤1,𝑤2, ...,𝑤𝑖 , ..., [𝑆𝐸𝑃]

]
, (20)

and the corresponding embedding will be obtained,

𝑉𝑊 =

[
𝑉[𝐶𝐿𝑆 ] ,𝑉𝑤1 ,𝑉𝑤2 , ...,𝑉𝑤𝑖

, ...,𝑉[𝑆𝐸𝑃 ]

]
. (21)

The reason for adopting BERT as the encoder is that BERT can
learn the contextual information of the target word and contains a
lot of public knowledge, which is very important for the WSD task.
The embedding corresponding to the target word, i.e., 𝑉𝑤𝑡𝑎𝑟𝑔𝑒𝑡

, is
selected for the next processing steps.

The gloss encoder, also according to the processing rules of
BERT, encodes the gloss texts corresponding to the target word,

𝐺𝑘 =

[
[𝐶𝐿𝑆]𝑘 ,𝑤1,𝑘 ,𝑤2,𝑘 , ...,𝑤𝑖,𝑘 , ..., [𝑆𝐸𝑃]𝑘

]
, (22)

and obtains the corresponding embeddings,

𝑉𝐺𝑘
=

[
𝑉[𝐶𝐿𝑆 ]𝑘 ,𝑉𝑤1,𝑘 ,𝑉𝑤2,𝑘 , ...,𝑉𝑤𝑖,𝑘

, ...,𝑉[𝑆𝐸𝑃 ]𝑘

]
, (23)

where 𝑘 refers to the index of the gloss texts. The gloss texts are
the description information of the senses of the target word, and do
not contain the target word itself. The embeddings corresponding
to [𝐶𝐿𝑆]𝑘 , i.e., 𝑉[𝐶𝐿𝑆 ]𝑘 , are selected as text embeddings for the
next processing steps. The reason for choosing 𝑉[𝐶𝐿𝑆 ] as the text
embedding of the gloss is because it contains all the information of
the whole text, and is often used to represent the whole text in the
industry.

Subsequently, word sense recognition of the target word is
achieved based on the obtained embeddings. First, the embeddings
obtained by the target word encoder and the gloss encoder are
copied in two copies, namely𝑉 1

𝑤𝑡𝑎𝑟𝑔𝑒𝑡
and𝑉 1

[𝐶𝐿𝑆 ]𝑘 and𝑉 2
𝑤𝑡𝑎𝑟𝑔𝑒𝑡

and
𝑉 2
[𝐶𝐿𝑆 ]𝑘 , respectively.
𝑉 1
𝑤𝑡𝑎𝑟𝑔𝑒𝑡

and 𝑉 1
[𝐶𝐿𝑆 ]𝑘 do not impose any processing and are di-

rectly regarded as general representations,

𝑉
𝑔𝑒𝑛𝑒𝑟𝑎𝑙
𝑤𝑡𝑎𝑟𝑔𝑒𝑡

≡ 𝑉 1
𝑤𝑡𝑎𝑟𝑔𝑒𝑡

(24)

and
𝑉
𝑔𝑒𝑛𝑒𝑟𝑎𝑙

[𝐶𝐿𝑆 ]𝑘
≡ 𝑉 1

[𝐶𝐿𝑆 ]𝑘 . (25)

The reason we call them general representations here is just to
distinguish them from DRs. The similarity between the embedding
of the target word and the embedding of each gloss is calculated
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to obtain the score of the corresponding sense under the general
representation,

𝑆𝑐𝑜𝑟𝑒
𝑔𝑒𝑛𝑒𝑟𝑎𝑙

𝑘
= 𝑉

𝑔𝑒𝑛𝑒𝑟𝑎𝑙
𝑤𝑡𝑎𝑟𝑔𝑒𝑡

⊙ 𝑉𝑔𝑒𝑛𝑒𝑟𝑎𝑙[𝐶𝐿𝑆 ]𝑘
(26)

where ⊙ refers to the inner product operation.
𝑉 2
𝑤𝑡𝑎𝑟𝑔𝑒𝑡

is used to generate the mean vector and covariance
matrix of the multivariate Gaussian distribution, that is, the mean
vectors are denoted as:

®𝜇1 = 𝑙𝑖𝑛𝑒𝑎𝑟 (𝑉 2
𝑤𝑡𝑎𝑟𝑔𝑒𝑡

) (27)

and

®𝜇2 = 𝑙𝑖𝑛𝑒𝑎𝑟 (𝑉 2
𝑤𝑡𝑎𝑟𝑔𝑒𝑡

) (28)

and the covariance matrices are denoted as:

Λ = 𝐷𝑖𝑎𝑔

(
𝑙𝑖𝑛𝑒𝑎𝑟 (𝑉 2

𝑤𝑡𝑎𝑟𝑔𝑒𝑡
)
)

(29)

and

𝛴 =
1
𝐾

𝐾∑
𝑘

𝑉𝑇
𝑘
𝑉𝑘 , (30)

where

𝑉𝑘 = 𝑆𝑆𝑁

(
𝑙𝑖𝑛𝑒𝑎𝑟𝑘 (𝑉 2

𝑤𝑡𝑎𝑟𝑔𝑒𝑡
)
)
, (31)

and then disentangled representations are obtained by Eq. (14),
i.e.,

𝑉𝑑𝑖𝑠𝑒𝑛𝑡𝑤𝑡𝑎𝑟𝑔𝑒𝑡
=

1
2

(
( ®𝜇1 + ®𝜇2) + ®𝜀 ∗ (𝑑𝑖𝑎𝑔(𝛴) + 𝑑𝑖𝑎𝑔(Λ))

)
. (32)

Similarly, based on 𝑉 2
[𝐶𝐿𝑆 ]𝑘 , DRs of the glosses can be obtained,

𝑉𝑑𝑖𝑠𝑒𝑛𝑡[𝐶𝐿𝑆 ]𝑘 . The similarity between the embedding of the target word
and the embedding of each gloss is calculated to obtain the score
of the corresponding word sense under DR,

𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑒𝑛𝑡
𝑘

= 𝑉𝑑𝑖𝑠𝑒𝑛𝑡𝑤𝑡𝑎𝑟𝑔𝑒𝑡
⊙ 𝑉𝑑𝑖𝑠𝑒𝑛𝑡[𝐶𝐿𝑆 ]𝑘 . (33)

At this point, we can obtain the final score of each sense of the
target word by weighting the scores obtained under the general
representation and the disentangled representation,

𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙
𝑘

= 𝛼𝑆𝑐𝑜𝑟𝑒
𝑔𝑒𝑛𝑒𝑟𝑎𝑙

𝑘
+ 𝛽𝑆𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑒𝑛𝑡

𝑘
(34)

where 𝛼 ∈ R and 𝛽 ∈ R represent the corresponding weights,
respectively, and 𝑘 refers to the index of senses. The setting method
of 𝛼 and 𝛽 can be determined by the experimental performance
or by the distribution of word senses in the data. In this paper, we
finally select equal values through experimental analysis.

3.3 Model Training
The objective function of our model consists of two parts, the cross-
entropy loss of the final result and the constraints of obtaining
the disentangled representation, where the constraints are further
divided into the constraint of obtaining the disentangled repre-
sentation of the target word and the constraint of obtaining the
disentangled representation of the glosses.

The cross-entropy loss function is

𝐿𝑜𝑠𝑠 (𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙 , 𝑖𝑛𝑑𝑒𝑥) (35)

= − log ©«
exp(𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙[𝑖𝑛𝑑𝑒𝑥 ] )∑
𝑖=1 exp(𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙[𝑖 ] )

ª®¬
= −𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙[𝑖𝑛𝑑𝑒𝑥 ] + log

∑
𝑖=1

exp(𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙[𝑖 ] )

where 𝑖𝑛𝑑𝑒𝑥 is the index of the list of the candidate senses of the
target word and

𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙 = [𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙1 , 𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙2 , ..., 𝑆𝑐𝑜𝑟𝑒𝑎𝑙𝑙
𝑘
, ...] . (36)

Our model employs the Adam optimizer [35] to update the pa-
rameters, and the specific settings of the optimizer will be given in
the experimental section.

4 EXPERIMENTS
4.1 Datasets
Our model is evaluated under the WSD evaluation framework pro-
posed by Navigli et al. [47]. The training set is SemCor1 [43]; the
development set is selected as SemEval-2007 (SE07; [52]) by con-
vention; the test sets include Senseval-2 (SE2; [49]), Senseval-3 (SE3;
[61]), SemEval-2013 (SE13; [48]), SemEval-2015 (SE15; [44]), and
the combination of all test sets (called ALL). In addition, the sets
of nouns, verbs, adjectives and adverbs extracted from ALL are also
used as the test set. The statistics of each dataset are shown in
Tab. 1.

By convention, F1-score in percentage is used as an evaluation
metric. All glosses come from WordNet 3.02 [42].

Table 1: Statistics of the datasets: the number of sen-
tences (#Sents), tokens (#Tokens), sense annotations (#An-
nos), sense types covered (#Types) in each dataset. #Ambigu-
ity refers to the ambiguity level, which implies the difficulty.

Dataset #Sents #Tokens #Annos #Types #Ambiguity

SE2 242 5,766 2,282 1,335 5.4
SE3 352 5,541 1,850 1,167 6.8
SE07 135 3,201 455 375 8.5
SE13 306 8,391 1,644 827 4.9
SE15 138 2,604 1,022 659 5.5
SemCor 37,176 802,443 226,036 33,362 6.8

4.2 Baselines
To evaluate our model and determine its place in the WSD commu-
nity, we divide the comparison models into two groups, namely the
previous work and the baseline systems.

For the previous work, we select excellent models from the
past three years, and these models are comparable to our models.
GLU [25] and LMMS [40] in 2019 are selected; SREF [67], ARES [59]
and SyntagRank [60] in 2020 are selected; COF [69], ESR [62] and

1http://lcl.uniroma1.it/wsdeval/training-data
2http://wordnetweb.princeton.edu/perl/webwn
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SACE [68] in 2021 are selected. Their results are taken from the
published data of the original paper.

For the baseline systems, we choose BEM [9] with similar
structure, GlossBERT [31] and BEM [9] using the same external
resources, and EWISE [37] and EWISER [6] using different repre-
sentations. Their results come from the original paper. In addition,
based on the IMS [32] architecture, we obtain the results under
Word2Vec [16], Context2Vec [41] and BERT [21] encoding methods,
which are called IMS+word2vec, IMS+context2vec and IMS+bert,
respectively.

4.3 Settings
The operating platform of the hardware is Ubuntu 18.04.3 and has
a GPU whose version is NVIDIA TITAN Xp. The development
platform is Python 3.8.33, and the learning framework is Pytorch
1.8.14. The pretrained language model BERT is provided by Trans-
formers 4.5.15. Following the traditional comparison method, the
versions BERT-base-uncased and BERT-large-uncased are used to
build the encoders of the models, and the constructed models are
called Ourbase and Ourlarge, respectively.

The hyperparameter Learning Rate, Context Batch Size, Gloss
Batch Size, Epochs, Context Maximum Length and Gloss Maximum
Length of the model are set to [1𝐸-5, 5𝐸-6, 1𝐸-6], 4, 256, 20, 128 and
32, respectively. Parameters not listed will be given in the published
code. The constant 𝑆 in Eq. (8) is set to 3. The coefficients 𝛼 and 𝛽
of Eq. (34) take the same value and are both set to 0.5.

4.4 Results and Analysis
The experimental results are shown in Tab. 2 and divided into the
comparison group of the previous work and the comparison group
of the baseline systems.

In comparison with previous work, our model outperforms
on most test sets and achieves excellent performance on the key
metric ALL, indicating that our model has certain competitiveness.
On test set SE13 and Adjectives, our model performs slightly lower
than the comparison models. From the statistical information given
by Tab. 1, SE13 has the lowest Ambiguity, indicating that the dataset
is mostly high-frequency senses (that is, head senses), otherwise,
the number of long-tail senses appears less. The purpose of the
model constructed by DR proposed in this paper is to improve the
recognition ability of long-tail senses. The results show that our
model not only improves the recognition rate of long-tail senses,
but also affects the recognition effect of high-frequency senses to a
certain extent.

In comparison with baseline systems, our model also per-
forms well on most test sets.

• Compared to BEM with a similar structure, our model out-
performs this model, indicating that adding DR can improve
the overall recognition ability of the model.

• Compared to models GlossBERT and BEM using similar
external sources, our model also performs well, indicating
that DR is effective.

3https://www.python.org/
4https://pytorch.org/
5https://huggingface.co/

• Compared to models EWISE and EWISER with different rep-
resentations, and models with different encoding methods, it
is proved that our model using both traditional and disentan-
gled representations is the correct choice, and it outperforms
models that only use a single representation.

4.5 Ablation Study
This section uses ablation experiments to analyze each component
of the model in detail. To verify the contribution of DR, the method
of removing the representations is adopted. To verify the value
of the independence constraint to the parameters, the method of
freezing parameters is adopted.

The experimental models are constructed as follows:
• Since the structure after removing DR is almost similar to
BEM [9], we incorporate BEM into the comparative experi-
ments.

• The original model Our𝑏𝑎𝑠𝑒 is listed here for comparison
with the ablation and frozenmodels, and is calledOur𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 .

• The ablation model is the remaining structure after remov-
ing DR on the basis of the original model, and is called
Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 .

• The frozen model prevents updates of BERT’s parameters
when obtaining the representations, and is calledOur𝑓 𝑟𝑜𝑧𝑒𝑛 .

The configuration and experimental results of BEM are taken from
the original paper. The hyperparameters and other settings of the
ablation model and frozen model are the same as those of the main
experiment.

The experimental results are shown in Tab. 3. In terms of overall
performance, Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 outperforms the contrasting models. The
detailed comparison is:

• Comparing Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 with Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , the results show
that the contribution of DR is more significant on SE2 and
SE3 than on SE13 and SE15. The #Ambiguity values of SE2
and SE3 are lower (that is, there are more high-frequency
senses than long-tail senses in the dataset), indicating that
DR can further improve the accuracy of simple recognition
tasks, but not for complex tasks.

• Comparing Our𝑓 𝑟𝑜𝑧𝑒𝑛 with Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , the results show
that the independence constraint is indeed beneficial to pa-
rameter update. Moreover, it also shows that DR purely rely-
ing on the original output of BERT also has some contribu-
tion to the final result.

• Comparing Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 and Our𝑓 𝑟𝑜𝑧𝑒𝑛 , the results show
that the performance of Our𝑓 𝑟𝑜𝑧𝑒𝑛 is better on SE2 and SE3,
and the performance of Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 is better on SE13 and
SE15, indicating that the performance of DR is positive under
simple tasks (even without updating parameters); DR under
complex tasks has a negative effect.

4.6 Experiments on Long-Tail Sense Datasets
In this section, we evaluate the performance of our model on long-
tail sense datasets to further analyze the value of DR for long-tail
senses.

Experimental Settings:On the basis of the training set SemCor
and the test set ALL, we reconstruct the training sets and test sets
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Table 2: F1-score (%) on the English all-wordsWSD task. The experimental results are divided into two parts: one is the previous
work, and the other is the baseline systems. According to the characteristics of our model, the baseline models are grouped
into models using BERT and Glosses, and models using different representations. SOTA performance is in bold.

Type Models Dev set Test sets Concatenation of all test sets
SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adjectives Adverbs ALL

Previous Work
GLU (EMNLP 2019) 68.1 75.5 73.6 71.1 76.2 - - - - 74.1
LMMS (ACL 2019) 68.1 76.3 75.6 75.1 77.0 - - - - 75.4
SREF (EMNLP 2020) 72.1 78.6 76.6 78.0 80.5 80.6 66.5 82.6 84.4 77.8
ARES (EMNLP 2020b) 71.0 78.0 77.1 77.3 83.2 80.6 68.3 80.5 83.5 77.9
SyntagRank (ACL 2020) 59.3 71.6 72.0 72.2 75.8 - - - - 71.2
COF (EMNLP 2021) 69.2 76.0 74.2 78.2 80.9 80.6 61.4 80.5 81.8 76.3
ESR (EMNLP 2021) 75.4 80.6 78.2 79.8 82.8 82.5 69.5 82.5 87.3 79.8
SACE (ACL 2021) 74.7 80.9 79.1 82.4 84.6 83.2 71.1 85.4 87.9 80.9

Baseline Systems

BERT + Glosses GlossBERT (EMNLP 2019) 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0
BEM (ACL 2020) 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0

different
representations

IMS+word2vec 62.6 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1
IMS+context2vec 61.3 71.8 69.1 65.6 71.9 71.0 57.6 75.2 82.7 69.0
IMS+bert 68.6 75.9 74.4 70.6 75.2 75.7 63.7 78.0 85.8 73.7
EWISE (ACL 2019) 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8
EWISER (ACL 2020) 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3
Ourbase 74.7 80.8 78.0 80.0 82.7 82.7 69.5 82.9 86.6 80.4
Ourlarge 75.4 81.1 79.2 81.1 83.2 84.9 72.1 84.4 88.5 81.4

Table 3: F1-score (%) on the English all-words WSD task un-
der ablation experiments. SOTA performance is in bold.

Models Dev set Test sets ALLSE07 SE2 SE3 SE13 SE15

BEM 74.5 79.4 77.4 79.7 81.7 79.0
Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 74.7 80.8 78.0 80.0 82.7 80.4
Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 73.5 76.1 75.2 77.7 81.4 77.0
Our𝑓 𝑟𝑜𝑧𝑒𝑛 73.6 76.7 76.4 76.9 80.3 76.6

of long-tail senses. From the original dataset, we extract the samples
whose sense samples are less than or equal to 𝐾 as a dataset, where
the values of 𝐾 are 1, 3, 5 and 10 respectively. From this operation,
we can get the training sets and test sets under 1, 3, 5 and 10 samples.
We do not make any changes to the development set and still use the
original SE07. Evaluation metrics and other settings are consistent
with the main experimental setting method.

Experimental Models: Experimental models include the origi-
nal version of our model (namely Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 in Sec. 4.5), the abla-
tion version (namely Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 in Sec. 4.5), and BEM [9]. Since
BEM is similar in structure to our model and is equivalent to our
ablation model, it is also listed as a comparison model. The config-
urations and hyperparameter settings of the models are consistent
with the main experimental setting method.

Experimental Results: The experimental results are shown in
Fig. 2. Overall, our model outperforms the ablation model and BEM
on the different long-tail sense datasets, indicating that DR is indeed
beneficial for improving the recognition of long-tail senses. It can

Figure 2: Evaluation experiments under the reconstructed
long-tail sense datasets, where 1, 3, 5, and 10 refer to
the number of long-tail senses in the dataset respectively
(senses with a number of senses less than this value will be
included); ALL refers to the entire dataset (i.e., the original
training set SemCor and test set ALL).

be further confirmed that the representation under independence
constraints can indeed reduce the dependence on training samples.

The detailed comparison is:

• Comparing Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 with BEM, the results show that
in the long-tail sense datasets of 1 and 3 sample, the per-
formance of the two is comparable, and the advantage of

2576



Disentangled Representation for Long-tail Senses of Word Sense Disambiguation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Figure 3: Evaluation experiments under cross-lingual
datasets: The experimental models are XLMR-Base used
in the original paper of the evaluation framework, and
Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 in the ablation experimental sec-
tion, where Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is Our𝑏𝑎𝑠𝑒 in the main experimental
section, and the structure and settings of Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 are
similar to BEM.

Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is prominent in the subsequent datasets, indicat-
ing that DR does not work in the case of extreme data scarcity.
The results also indicate that a certain amount of data is
needed to support the independence constraints among the
features of the representation.

• Comparing Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 with Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 , the results also
support the above point of view, butOur𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 shows some
advantages under the long-tail sense datasets of 1 and 3 sam-
ple, and Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 further enlarges the advantages under
the long-tail sense datasets of 5 and 10 sample. The results
indicate that our model can perform well in the case of ex-
tremely scarce training data and relatively sufficient training
data.

• Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 and BEM are essentially the same models, but
they have some gaps, indicating that our model still has the
potential to improve by adding some tricks.

4.7 Experiments on Cross-Lingual Datasets
To further evaluate the robustness of the model, we conduct exper-
iments on the latest cross-lingual evaluation framework6 proposed
by Pasini et al. [50] in 2021. This evaluation framework has a larger
amount of data than the evaluation framework proposed by Nav-
igli et al. [47], while covering other languages besides English. In
this section, we only conduct experiments on languages other than
English.

Furthermore, to present the contribution of DR to the model,
we also adopt the settings of the models in the ablation exper-
iments, namely the original model Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and the ablation
model Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 . For the control model, we adopt the model
XLMR-Base [17] used in the original paper as baselines. Note that
since the cross-lingual datasets are constructed based on BabelNet7,
the glosses in the experiments are from BabelNet. Moreover, since

6https://sapienzanlp.github.io/xl-wsd/
7https://babelnet.org/

most small languages in BabelNet use definitions in English, we
directly use glosses in English to provide a candidate list of senses.
Other unmentioned information about the model setting is con-
sistent with the main experiment, and the information about the
datasets is consistent with the setting method of this evaluation
framework.

The experimental results are shown in Fig. 3.
• ComparingOur𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 with XLMR-Base,Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is bet-
ter than XLMR-Base on multiple datasets, which shows that
our model has a certain robustness, and also shows that DR
method has a wide range of applicability.

• Comparing Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 with Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 , Our𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is su-
perior to Our𝑎𝑏𝑙𝑎𝑡𝑖𝑜𝑛 , which shows that DR does play a role,
and indirectly points out that DR is helpful for the represen-
tation and identification in the cross-lingual datasets. The
excellent performance on these datasets also shows that em-
ploying English sense definitions for other languages easily
allows the system to treat definitions in English as long-tail
senses.

Analysis of the poor results: On the Spanish, Japanese, Estonian,
Dutch, Croatian and Catalsn datasets, our model performs poorly,
and the core reason is that their volume is relatively small, and
most of them are labeled with high-frequency word senses. As the
ablation study concluded, DR still requires a certain amount of data
to back them up. Moreover, when the high-frequency word senses
account for the vast majority, DR does not have room to play.

5 CONCLUSIONS
The long-tailed distribution of data leads to serious data imbalance
and brings great challenges to data-driven models. Considering that
DR does not require a complex feature extraction and integration
process like the traditional neural network-based representation
learning methods, this paper proposes to leverage DR to alleviate
the dependence of the WSD model on the sample size during the
long-tail sense training process. Our contribution is to propose a
novel method to obtain DR through an independence constraint
mechanism among features under the assumption of multivariate
Gaussian distribution, which can enhance the strength of indepen-
dence between features compared to 𝛽-VAE. The effectiveness of
the model is validated on the English all-words WSD evaluation
framework, the constructed long-tail word sense datasets and the
latest cross-lingual datasets.

The significance of this paper is to rediscover the value of DR
from the perspective of alleviating the dependence of data-driven
models on training data. And this paper proposes a novel method
to obtain DR, but the effectiveness of this method in other fields
needs further verification. In future work, we will explore ways to
extract fewer and more representative features under the premise
of feature independence.
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