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Abstract — In the training process of Neural networks
(NNs), the selection of hyper-parameters is crucial, which
determines the final training effect of the model. Among
them, the Learning rate decay (LRD) can improve the
learning speed and accuracy; the Weight decay (WD)
improves the over-fitting to varying degrees. However, the
decay methods still have problems such as hysteresis and
stiffness of parameter adjustment, so that the final model
will be inferior. Based on the Quantum contextuality (QC)
theory, we propose a Quantum contextuality constraint
(QCC) to constrain the weights of nodes in NNs to further
improve the training effect. In the simplest classification
model, we combine this constraint with different methods
of LRD and WD to verify that QCC can further improve
the training effect on the decay method. The performance
of the experiments shows that QCC can significantly
improve the convergence and accuracy of the model.

Key words — Quantum contextuality, Non-classical
probability constraints, Training neural networks.

I. Introduction
Neural networks (NNs) have been widely concerned

and studied since it was proposed. In recent years, it has
rapidly developed and achieved gratifying results. NNs is
highly effective and contributes to significantly improve
the state-of-the-art in Speech recognition, Translation,
Visual object recognition, Drug discovery, Driverless
car technology, etc.[1−3]. However, the training process
of NNs is a difficult optimization problem, and the
training effect is closely related to the choice of its hyper-
parameters.

NNs typically use the optimization method of
Stochastic gradient descent (SGD) to update weights. In
this optimization process, the learning rate plays a very

important role. It is well known that too small a learning
rate will make a training algorithm converge slowly
while too large a learning rate will make the training
algorithm diverge[4]. Therefore, the researchers propose
various methods to dynamically adjust the learning rate
to balance the relationship between the two. Among
them, the achievements in recent years include: Smith[5]

proposes a method to improve the learning effect of
the model by cyclical learning rates within a fixed
range; Dauphin et al.[6] introduce an adaptive learning
rate scheme based on the equilibration pre-conditioner;
Gulcehre et al.[7] propose an adaptive learning rate
algorithm, which utilizes curvature information for
automatically tuning the learning rate. Moreover, people
also use the method of Weight decay (WD) to limit the
update of weights and thus improve the generalization
ability of the model. Krogh et al.[8] explains why WD
can improve the generalization ability of feed-forward
NNs, and proves that WD has the effect of suppressing
unrelated components in weight vectors and suppressing
the influence of some static noise on targets in linear
networks. For the update of weights, the method of
Learning rate decay (LRD) has a certain hysteresis and
inaccuracy of the adjustment of the learning rate value,
and then the update of the weight is in a passive position.
Moreover, the method of WD lacks some flexibility. The
above problems leads directly to a decline in the learning
speed and the final effect of the model. This prompt us
to find a better way to solve this optimization problem.

Quantum contextuality (QC) is one of the most
important principles in Quantum theory[9,10], as well
as an important quantum resource[11,12]. It points out
that the measurement result of a measurement operator
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is directly related to the context (i.e., the quantum
context) in which it is located. Due to the absence of
practical quantum computers, simulating or quantifying
QC[13,14] into specific constraints on classical computers
is a possible option. In order to make the article structure
neat, we put the basic concepts and research progress of
QC.

Based on the generalization of KCBS inequality[15],
we describe the boundaries given by quantum theory
and classical probability (i.e., non-contextuality) theory
as the constraints of quantum contextual conditions
and mutual exclusive conditions on general probability
theory respectively, i.e. Quantum contextual constraint
(QCC) and Mutual exclusive constraint (MEC). Under
the guidance of this idea, we introduce QCC into NNs
to constrain the weights. Since we want to verify that
QCC can still improve the training effect of the model on
the existing LRD and WD, we need the control group
and the experimental group, and the two groups are
compared to verify the contribution of QCC. We set the
model to which only the decay method is added as the
control group, and set the model to which the decay
method and QCC are added as the experimental group.
Tested under the simplest classification model for two
standard classification datasets, the expression shows that
QCC can significantly improve the convergence speed and
generalization ability.

II. Quantifying and Utilizing QC
Kochen-specker (KS) theorem[16] is most proposed

by Kochen and Specker in 1975, which reveals the
characteristics of contextuality and nonlocality[17] of
quantum theory. QC points out that the measurement
results of a measurement operator depend explicitly on
the measurement base it is in, and this measurement
base constitutes a contextual scenario of the measured
quantity. QC is considered to be one of the most essential
features of quantum theory, and many other quantum
properties can be derived from it. At the same time, QC
itself is a very important quantum resource. Quantum
nonlocality is only a special case of QC, which reveals that
quantum theory violates the most basic locality principle
of classical physics, that is, things directly affect only
what is in their immediate vicinity[18].

Although contextuality and nonlocality can be
regarded as non-classical features and can be applied
to information processing tasks[19,20], their research and
application are not yet reached a matching degree. In the
absence of quantum computer resources, the researchers
mainly work in two directions[14]:

• Quantify contextuality and non-locality;
• Find suitable carriers to achieve quantum charac-

teristics under classical conditions[21,22], e.g., NNs.

In terms of quantifying QC, Kleinmann et al.[23]
investigate the memory cost as the critical resource in a
classical simulation of QC and the use of memory is taken
as a quantitative index of QC; Svozil and Karl[24] believe
that the amount of this violation of non-contextuality
can be quantified by the frequency of occurrence of
QC; Grudka et al.[26] propose a program of quantifying
contextuality based on two complementary approaches.

Among them, the family of inequalities proposed
by Cabello et al.[15] is very meaningful, which clearly
indicates the boundary of the classical probability
(i.e., non-contextual), the quantum and the generalized
probability theory for the high-dimensional system or
multi-observable. Based on the work, we will get MEC
and QCC. The quantification method and how it works
with NNs will be given below.

1. Quantifying QC
The Klyachko-Can-Binicioğlu-Shumovsky (KCBS)

inequality[26] (that is, one satisfied by any non-contextual
hidden variable theory) plays an important role in the
quantum theory because it can verify the existence of
QC, and also shows that quantum theory cannot be
explained simply by hidden variable theory. In known
inequalities, the KCBS inequality is the simplest non-
contextual inequality, which can be violated by a three-
level quantum system or qutrit[15,27].

The KCBS inequality is experimentally validated[28]

and contribute to the development of a lot of related
research. Cabello et al.[10] summarize and generalize the
research on QC, and obtain a set of inequalities covering
the non-contextual, the quantum and the generalized
probabilistic theory, which are denoted by ECN , EQ
and EGP , respectively. The extreme values over these
inequalities are denoted βCN , βQ and βGP , respectively,
which relationship between them can be expressed as

βCN ≤ βQ ≤ βGP (1)

by definition[15].
For a given hypergraph Γ, we can define the

adjacency graph G on the vertex set V : two vertices
i, j ∈ V are joined by an edge if and only if there exists a
context C ∈ Γ such that both i, j ∈ C. Then

βCN (Γ) = α(G), βQ(Γ) = ϑ(G), βGP (Γ) = α∗(G) (2)

where α(G) =
n− 1

2
is the independence number, ϑ(G) =

ncos(π/n)

1 + cos(π/n)
is the Lovász number[29] and α∗(G) = n

2 is

the so-called fractional packing number[30].
If we assume that the interactions between the

vertices of G are the same (that is, the vertices have
the same status), then we can get the mean of each
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vertex (that is, the mean of each vertex in the case of
the generalized probabilistic, the quantum and the non-
contextuality theory), which are

α(G) =
α(G)

n
, ϑ(G) =

ϑ(G)

n
, α∗(G) =

α∗(G)

n
(3)

respectively. Note that although we assume that all
vertices in G have the same status, the fact is that
the premise of the KCBS inequality is based on this
assumption. Therefore, averaging for each vertex is
normal and natural.

Here we introduce the constraint quantity C, i.e.,
MEC Cme, QCC Cqc, let α(G) = Cme · α∗(G), ϑ(G) =

Cqc · α∗(G). This implies that the constraint of the
generalized probabilistic theory is 1. In the same way,
we can get the expression of C under the mean condition,
which is

α(G) =
Cme · α∗(G)

n
=

1

2
· (1− 1

n
) (4)

ϑ(G) =
Cqc · α∗(G)

n
=

1

2
· (1− tan2(

π

2n
)) (5)

α∗(G) =
1 · α∗(G)

n
=

1

2
· 1 (6)

respectively. So far, we obtain the two most important
constraints in this paper, i.e., MEC of each vertex under
non-contextual (i.e., classical probabilistic) theory,

Cme(n) := 1− 1

n
(7)

and QCC of each vertex under quantum theory,

Cqc(n) := 1− tan2(
π

2n
) (8)

Their curve graphs are shown in Fig.1.
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Fig. 1. The yellow line is MEC under the non-contextual
theory; The red line is QCC under the quantum
theory; The blue line is the unconstrained situation
under the generalized probabilistic theory

Since Cqc is the average QCC of each vertex obtained
in the case of n-cycle graphs, in the other n vertex
graphs, Cqc will be larger than this constraint but smaller
than MEC. Since the existing research is still unable to
determine QC of any graph, we define a degree of freedom

γ to give a change block for QCC, which is

CQCC(n, γ) = γ · Cqc(n) + (1− γ) · Cme(n) (9)

where γ ∈ [0, 1].
2. Utilizing QC
From the derivation method of QCC and MEC, we

are inspired that QC can be used as a constraint item
and act on the probability item to make it have features
of QC. This article is based on such ideas or motivations.

The introduction of QCC can be thought of as a
description of the relationship between vertices within
multiple probability spaces. The difficulty in introducing
this constraint into the classical structure is to find
a graphical structure with multiple probability spaces.
However, since there is no multiple probability space in
the classical world, we can only retreat to the next, and
use the independence between the vertices to identify
the existence of multiple spaces. Since in the fully
connected layer of NNs, the vertices in the same layer
are not connected, i.e., independent of each other, and
the vertices in the adjacent layer are connected, it
constitutes a multi-probability space that meets the basic
requirements, as shown in Fig.2. Based on this structure,
we introduce QCC into NNs to constrain the weight of
the node.

In order to avoid the introduction of interference
factors and thus affect the experimental results. We
use a single hidden layer classification model structure
to experiment. In the model, all output layer nodes and
each hidden layer node form a context structure, so the
number of hidden layer nodes is equal to the number of
context structures.

We apply CQCC to the neuron nodes of the output
layer to achieve the purpose of limiting the weight of the
node. Its form is:

evidencei =
∑
j

(CQCC)iWi,jxj + bi (10)

where W is the weight matrix, b is the bias, x is the value
entered, j represents the attributes of the sample and i

represents the number of the samples. It should be noted
here that adding constraint CQCC is the main difference
between our model and the classic model, and the other
parts are basically the same. In order to meet the needs
of the operation, CQCC here is a diagonal matrix. The
evidence is then converted to probability

y = softmax(evidence) (11)

using the softmax function. The softmax function can be
defined as

softmax(x) = normalize(exp(x)) (12)
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(a) (b)

Fig. 2. (a) is a fully connected layer common in NNs. (b) is a basic component of (a), that is, one of the
upper layers connected to all nodes of the lower layer together constitutes a basic component. This
basic component is considered to be a basic component that can produce QC with n + 1 vertices
(nodes of neurons)

where normalize represents a normalization function.
Note that CQCC here is fundamentally different from
the L2 regularity. The L2 regularity acts on the weight
update to reduce the weight, i.e., on the cost function.
And CQCC directly acts on the weight to constrain the
weight, i.e., on the objective function, and it needs to
learn the specific parameters γ.

III. Experiments
The purpose of this section is to demonstrate the

effectiveness of CQCC in the simplest classification model.
We add CQCC to the model that already uses the method
of LRD to verify whether CQCC will further improve the
convergence of the loss function. Similarly, we add CQCC

to the model that already uses WD, i.e., L2 regularity, to
verify that CQCC can further improve the generalization
ability of the model.

1. Model structure and datasets
We use a single hidden layer classifier as an

experimental model to verify the effectiveness of CQCC .
The experimental model of the control group is a classical
single-layer classification model without adding CQCC ; the
experimental model of the experimental group is a single-
layer classification model with CQCC added. The model
structure is shown in Fig.3. The number of hidden layer
nodes is the same as the number of input layer nodes,
and the number of output layer nodes is the number of
categories of samples. The final output nodes of the model
use the softmax function to adjust its output value to a
relative probability.

Our intention to use the simplest classification
model is to minimize the impact of other variables on
the experimental results. Moreover, it is known from
the nature of QC that the more complex the model
structure, the smaller the average contextual strength of
the substructure. This is why we chose a simple model.

We train the model with two multi-category datasets,
MNIST and Fashion-MNIST. The details of the datasets

can be viewed separately in Refs.[31,32].

Fig. 3. Model structure of the experimental object

2. Learning rate decay with QCC
In order to verify that the addition of CQCC

will improve the convergence of the loss function and
further improve the training effect of the model, we
combine the current mainstream method of LRD, such
as Exponential decay, Staircase decay, Polynomial decay,
Polynomial decay (cycle), Inverse Time decay and
Natural Exponential decay, to verify the performance
of CQCC . We train the model under the MNIST and
Fashion-MNIST dataset, respectively. The experimental
results of the model are shown in Fig.4 and Fig.5,
respectively.

In order to objectively verify the contribution of
CQCC , we first tune the model that add different methods
of LRD, and train to obtain experimental data of the
control group. Without modifying any parameters, we
only add CQCC and train the model to get the data
of the experimental group. The advantage of setting
the experimental procedure in this way is that the
contribution of CQCC can be clearly determined by
comparing the data of the experimental group with the
data of the control group, and the same parameters can
be used to reduce the influence of the parameters on
the experiment. The parameters of LRD can be selected
according to the loss function curve, and the appropriate
parameters can be freely selected. Because we will use the
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Fig. 4. Under the MNIST dataset, CQCC is added into the model that already uses Exponential decay,
Staircase decay, Polynomial decay, Polynomial decay (cycle), Inverse Time decay and Natural
Exponential decay, respectively, to verify the validity of CQCC . The test accuracy of the model
is shown in the figure, where “original” means that only the decay method is added
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Fig. 5. Under the Fashion-MNIST dataset, CQCC is added to the model that already uses Exponential
decay, Staircase decay, Polynomial decay, Polynomial decay (cycle), Inverse Time decay and Natural
Exponential decay, respectively, to verify the validity of CQCC . The test accuracy of the model is
shown in the figure, where “original” means that only the decay method is added

same parameters for both the control and the experimen-
tal group, the choice of parameters will not affect the
comparison results. This experiment uses the parameters
that show the best results in the control group. And the
other two super-parameters, mini-batch sizes and epochs,
are 128 and 100 respectively.

From the comparison of experimental data, we can
clearly see that CQCC plays a certain role in promoting the
convergence of the model. Moreover, CQCC also made a
certain contribution to improve the test accuracy of the

model. From these results, we can basically determine
that CQCC is effective for improving the training effect of
the model. We also selected other kinds of optimization
algorithms for experiments, such as Adam, Adgrad and
AdaDelta, and obtained similar results.

For the degree (or size) of contribution, the
contribution of CQCC to the final effect of the model is
about one percentage point, not a big step forward. There
are two main reasons for this: 1. This model reaches the
limit that the model can learn, and the space that can be
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improved is not too large; 2. As mentioned above, as the
complexity of the model increases, the constraint strength
of quantum contextuality decreases. This is why we do
not use complex models for experiments.

3. Weight decay with QCC
In order to verify that the addition of CQCC can

still improve the generalization ability for the model that
add methods of WD (e.g., L2 regularity). We set the
model with the L2 regularity as the control group, and
set the model with the L2 regularity and CQCC as the
experimental group. The parameter setting method of
L2 regularity is the same. Moreover, the learning rate of
both is set to a fixed value and the same. In addition, the
learning rate, mini-batch size and epoch of the two groups
are set to 0.01, 128 and 100, respectively. Two models
were trained to obtain the data of the control group and
the experimental group. The results are shown in Fig.6.
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Fig. 6. Under the MNIST and Fashion-MNIST dataset, verify
the contribution of CQCC to the model that has added
the L2 regularity. The experimental results are shown
in this figure

It can be seen from the experimental results that
CQCC has a constraining effect, that is, the loss function
vibration is significantly reduced, and also causes the
loss function to converge to a smaller value. From
the perspective of test accuracy, CQCC can significantly
improve the generalization ability of the model. It proves
that CQCC can still play a certain role under the premise
of L2 regularity.

IV. Conclusions
This paper considers the possibility of further

improving the model effect from the perspective of
optimization of NNs. Starting from an important principle
of quantum theory, i.e., QC, we extract QCC based on the
work of Cabello et al.[15] and apply it to the optimization
process of NNs. On top of the existing optimization
methods, we add QCC to verify whether QCC further
improve the convergence effect and generalization ability
of the model. The experimental results show that

the QCC improves the test accuracy and significantly
promotes the stability of the accuracy curve. From the
experimental performance, we can basically verify that
QCC is effective.

In the absence of a quantum computer that can
be used, the use of quantum properties can only be
compensated by simulating the basic structure required to
produce quantum properties or by quantifying quantum
properties[14]. In this paper, we use the method of
quantifying quantum contextuality to introduce QC as
a constraint into the training process of NNs. Although
this method cannot clearly indicate the structural features
that produce quantum properties, and can not clearly
distinguish the specific type of quantum properties, that
is, there is a large ambiguity, it provides the possibility
of using quantum properties from the perspective of
quantifying quantum properties.

In the later work, we will try to introduce the
quantized value of QC into the analog structure that can
produce QC, which is combined and complement each
other. Moreover, for the problem that QCC can only
be applied to the minimum contextual structure and that
the constraint boundary is broad, we will further study it
in the next step.
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