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Abstract. In the field of Natural Language Processing (NLP), an excel-
lent evaluation framework is crucial to the development of target tasks
or fields. The emergence of Large Language Models (LLMs) requires
some effective evaluation frameworks to protect their development. Tra-
ditional NLP tasks can be used to test the ability to understand and use
language, but an evaluation framework that can test the accuracy and
conciseness of language expression is still needed, that is, a dataset that
can evaluate the ability to use long-tail senses. In addition, the Word
Sense Disambiguation (WSD) task has benefited from some excellent
evaluation frameworks and has been steadily developed. As models ef-
fectively identify high-frequency senses, the research focus of the WSD
task has shifted to the identification of low-frequency senses, that is,
long-tail senses. Based on the original evaluation framework of WSD,
this paper constructs an evaluation framework that distinguishes high-
and low-frequency senses, and the evaluation framework can be used
to evaluate the vocabulary-level language understanding and expression
ability of long-tail senses of LLMs, as well as the recognition ability of
long-tail senses of WSD models.

Keywords: Evaluation Framework · Word Sense Disambiguation · Large
Language Models.

1 Introduction

In the field of Machine Learning (ML), an evaluation framework refers to a col-
lection of datasets and metrics used to evaluate model performance. An excellent
evaluation framework can objectively and effectively evaluate the effectiveness
and contribution of the proposed model, and promote fair competition among
models [1, 41]. The rapid and efficient development of many subtasks in the
field of Natural Language Processing (NLP) is due to the corresponding evalua-
tion framework [11, 39, 40], such as the dataset WMT (Workshop on Statistical
Machine Translation) and the evaluation metric BLEU (Bilingual Evaluation
Understudy) score in machine translation tasks [12].
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Large Language Models (LLMs) have risen rapidly in 2023 and have quickly
become a research hotspot in the field of Artificial Intelligence [6]. It is foresee-
able that LLMs will have an unprecedented and far-reaching impact in many
fields such as natural language understanding and generation, text generation
and creation, cross-language communication, intelligent assistants, etc., and will
bring new opportunities and challenges. Currently, LLMs are evaluated on many
traditional tasks in the field of NLP, such as natural language understanding,
machine translation, dialogue systems, text generation, code generation, ques-
tion and answer tasks, and language model ability testing, but are rarely eval-
uated at the vocabulary-level language understanding and expression ability of
LLMs. The evaluation framework at the lexical level is conducive to
testing the understanding of the vocabulary itself, the richness of the
words, and the language expression ability of LLMs, and is beneficial
to promoting the development of LLMs.

In addition, Word Sense Disambiguation (WSD) is the most basic research
topic in the field of NLP [17, 37]. The WSD task aims to determine the most
likely gloss in a list of word sense definitions for the target word based on given
contextual information, and is a standard classification task. With the develop-
ment and progress of machine learning and word sense recognition technology,
the recognition accuracy of high-frequency word senses, that is, commonly used
word senses, has reached expectations. Therefore, the current research focus
turns to the most difficult low-frequency word senses (also known as long-tail
word senses), that is, long-tail WSD [35, 38, 36]. However, there is no eval-
uation framework suitable for evaluating long-tail WSD tasks in the
community.

For the above two motivations, based on the evaluation framework of WSD
proposed by Raganato et al. [22], called the original evaluation framework,
this paper proposes an evaluation framework that distinguishes high- and low-
frequency word senses, in order to promote the development of long-tail word
sense disambiguation tasks and LLMs. Because it is difficult to distinguish be-
tween high- and low-frequency word senses, that is, the identification criteria
vary from person to person, we use machine and manual methods to imple-
ment it. The cooperation between man and machine can avoid the inevitable
negligence or mistakes caused by workers in the tedious work process. First, we
leverage ChatGPT 4.0 to identify high- and low-frequency word senses for target
words in the given text, in which two different prompting projects are used to
repeatedly identify the target words; Then, target words with inconsistent recog-
nition results given by the machine method are manually screened by multiple
people to provide a final division of high- and low-frequency word senses.

The contributions are summarized as follows:

– An evaluation framework of WSD suitable for evaluating long-tail word sense
disambiguation tasks and LLMs is constructed using machine and manual
methods. The framework has been published online, https://qnlp.github.io/.

– Based on the evaluation framework, experiments under three settings are
implemented on mainstream LLMs to testing the understanding of the vo-
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cabulary itself, the richness of the words, and the language expression ability
of LLMs.

– Based on the evaluation framework, experiments are conducted on previous
WSD models to verify their ability to identify long-tail word senses.

2 Related Work

2.1 Evaluation Frameworks for WSD

The evaluation framework for WSD tasks has also gone through several stages
of development, from the initial one that was only suitable for machine learning
models with a small number of learning parameters, to the one that was suitable
for deep learning models with a large number of learning parameters, and from
the initial one that was only for the English language, to the one that was for
multiple languages.

In the machine learning period, SemCor constructed by Miller et al. [14], OM-
STI constructed by Taghipour et al. [28], Senseval-2 constructed by Edmonds et
al. [9], Senseval-3 constructed by Snyder et al. [26], SemEval-07 constructed by
Pradhan et al. [21], SemEval-13 constructed by Navigli et al. [18] and SemEval-
15 constructed by Moro et al. [16] are used in WSD tasks. In the deep learning
period, Navigli et al. [22] integrated WSD datasets commonly used in the ma-
chine learning period and constructed them into a general evaluation framework
for WSD tasks. This evaluation framework has been widely adopted by the WSD
community in the following 4 to 5 years, playing an important role in the de-
velopment of the field. In addition, Pasini et al. [20] released a cross-lingual
evaluation framework for WSD tasks in 2021, which has sense-annotated devel-
opment and test sets in 18 languages from six different linguistic families, as well
as language-specific training sets. This evaluation framework not only expands
the size of datasets and provides conditions for training and fine-tuning pre-
trained language models or LLMs, but the cross-lingual characteristics promote
the transition of WSD models to multi-language scenarios.

The evaluation framework for WSD integrated by Navigli et al. [22] laid the
foundation for the early development of WSD tasks. However, as the accuracy of
recognition of high-frequency word senses by WSD models continues to improve,
this evaluation framework is no longer applicable. Our work is to further improve
this evaluation framework and develop it into an evaluation framework that can
test the accuracy of long-tail word senses. Specifically, we divide the word senses
in this evaluation framework into high-frequency and low-frequency word senses.

2.2 Evaluation Frameworks for LLMs

LLMs are standard generative pre-trained language models [22], and many tasks
in the field of NLP can be handled by generating text, such as natural language
understanding, machine translation, dialogue systems, text generation, code gen-
eration, etc. Therefore, the evaluation framework for the above tasks can be
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used to evaluate the performance of LLMs. Commonly used evaluation frame-
works include GLUE (General Language Understanding Evaluation) [32], Su-
perGLUE [31], and SQuAD (Stanford Question Answering Dataset) [23]. GLUE
is a multi-task evaluation framework that includes multiple natural language
understanding tasks, such as text classification, sentiment analysis, natural lan-
guage inference, etc., and can be used to evaluate the general performance of
models. SuperGLUE is an extension of GLUE, including some more complex and
challenging tasks, such as reading comprehension, multiple-choice questions, etc.
SQuAD is a common evaluation framework for question-answering tasks, which
consists of questions about an article, and the model needs to select answers
from the article. It evaluates the model by calculating how much the answer
generated based on the model overlaps with the standard answer. In addition,
some benchmark tests can be used to understand the creativity and reasoning
capabilities of LLMs, such as LAMBADA [19]. LAMBADA tests the contex-
tual understanding capabilities of LLMs, requiring the model to predict missing
words in a given context.

It is important to emphasize that LLMs have not yet been tested on vocabulary-
level tasks. LLMs are pre-trained on a large number of common datasets and
have the ability to understand high-frequency word senses. Testing the perfor-
mance of LLMs on low-frequency word senses, namely, long-tail word senses, can
better evaluate their language understanding and expression capabilities.

3 The Evaluation Framework for Long-tail Word Senses

3.1 The Original Evaluation Framework

Navigli et al. [22] released the first evaluation framework1 for WSD suitable for
deep learning models in 2017, which standardized the WSD task and promoted
the development of the WSD community. The evaluation framework contains
two training sets, SemCor [14] and OMSTI [28], and five test sets, Senseval-2 [9],
Senseval-3 [26], SemEval-07 [21], SemEval-13 [18] and SemEval-15 [16], of which
SemEval-07 is often used as a development set. SemCor is a manually sense-
annotated corpus, and its list of glosses comes from WordNet 1.6. OMSTI is a
large corpus annotated with senses, and its list of glosses comes from WordNet
3.0. The lists of glosses for Senseval-2, Senseval-3, SemEval-07, SemEval-13 and
SemEval-15 are from WordNet 1.7, WordNet 1.7.1, WordNet 2.1, WordNet 3.0
and WordNet 3.0 respectively.

The evaluation metric used by the WSD models under the evaluation frame-
work uniformly adopts the F1 score at the percentage, and the form that appears
in the paper is F1-score(%). In past WSD tasks, F1 score is also the most com-
monly used metric.

1 http://lcl.uniroma1.it/wsdeval/
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Table 1. Statistics of high- and low-frequency word senses of the datasets in the
constructed evaluation framework are given, where NOUN, VERB, ADJ and ADV
refer to nouns, verbs, adjectives and adverbs respectively, Total refers to the entire
dataset, and dataset ALL is the union of datasets Senseval-2, Senseval-3, SemEval-07,
SemEval-13 and SemEval-15.

High-frequency Word Senses Low-frequency Word Senses
Datasets NOUN VERB ADJ ADV Total NOUN VERB ADJ ADV Total
Senseval-2 1,005 483 425 234 2,147 61 34 20 20 135
Senseval-3 840 533 328 12 1,713 60 55 22 18 137
SemEval-07 147 275 0 0 422 12 21 0 0 33
SemEval-13 1,541 0 0 0 1,541 103 0 0 0 103
SemEval-15 506 144 149 76 975 25 7 11 4 47
ALL 4,040 1,542 902 326 6,810 260 110 53 20 443
SemCor 75,592 83,133 29,323 17,788 205,836 11,410 5201 2,430 1,159 20,200

3.2 The Constructed Evaluation Framework

Based on the original evaluation framework, this paper constructs an evaluation
framework that distinguishes high- and low-frequency word senses. We leverage
machine and manual methods to classify high- and low-frequency word senses.
First, we use the machine method to identify high- and low-frequency word
senses of target words based on the given text; then, we use the manual method
to identify target words that cannot be identified by the machine method.

– The machine method uses the current best generative language model Chat-
GPT 4.0 (i.e., GPT-4) to judge the word sense of the target word. We con-
structed two types of prompts to drive GPT-4 to identify target words, and
obtained two results accordingly. When the two results are the same, the
results given by GPT-4 are used as the division of high- and low-frequency
word senses of the target word; when the two results are not the same, the
manual method is used for further identification.

The first purpose of using two prompts to drive GPT-4 is to avoid possible
inapplicability in special circumstances under a single prompt. The second pur-
pose is not to rely too much on GPT-4, which allows GPT-4 to identify simple
instances as much as possible, and leave the difficult ones to manual process-
ing. The high-frequency and low-frequency divisions corresponding to each word
sense definition in the second prompt are given by WordNet. We consider word
senses whose "Frequency Count" is less than or equal to 2 to be low-frequency
word senses2.

– The manual method uses joint identification by multiple people to give the
final result. We hired five college students to perform manual identification
of target words that could not be identified by the machine method. Five

2 http://wordnetweb.princeton.edu/perl/webwn/
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college students each gave their own identification results, and the final result
with a higher proportion are used as the division of high- and low-frequency
word senses of the target word.

The first purpose of hiring five students is to give results that are as reliable
as possible. The second purpose of choosing an odd number of students is to
ensure that there is no tie.

Fig. 1. The proportion of high- and low-frequency word senses in each dataset under
the constructed evaluation framework.

The statistical information of the datasets in the constructed evaluation
framework is shown in Tab. 1, in which the proportion of high- and low-frequency
word senses in each dataset is shown in Fig. 1. As can be seen from Fig. 1, the
proportion of low-frequency word senses (long-tail word senses) in all datasets
is less than 10% and greater than 5%.

The evaluation metrics of the constructed evaluation framework also use the
F1 score at the percentage used in the original evaluation framework. In addition,
other content not presented in this paper remains consistent with the original
evaluation framework.

4 Experiments and Analysis

In order to test the evaluation framework published in this paper, and also to
evaluate the accuracy of the WSD models proposed by predecessors in identifying
long-tail word senses, and the ability of LLMs to encode, understand and leverage
long-tail word senses, the following two parts of experiments are conducted.

4.1 WSD under The Evaluation Framework

Experimental models: Representative WSD models in the past five years are
used as experimental models, including LMMS [13], GlossBERT [10], BEM [5],
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Table 2. Experimental results of WSD models under the constructed evaluation frame-
work: HF and LF refer to the experimental results under high- and low-frequency word
senses respectively.

Senseval-2 Senseval-3 Semeval-07 Semeval-13 Semeval-15 ALL
WSD Models HF LF HF LF HF LF HF LF HF LF HF LF
LMMS 77.3 60.0 76.6 62.0 68.5 63.6 76.8 49.5 77.6 63.8 76.4 60.3
GlossBERT 79.5 50.4 77.3 58.4 73.0 60.6 78.1 57.3 79.8 68.1 78.2 56.9
BEM 80.9 55.6 78.5 64.2 75.8 57.6 80.9 62.1 82.4 68.1 80.2 60.3
ARES 79.0 63.0 78.5 59.9 71.8 60.6 79.0 51.5 83.4 78.7 79.0 60.9
KWSD 70.9 48.9 68.4 37.2 58.3 39.4 70.4 37.9 73.0 57.4 69.5 44.9
EWISER 79.8 64.4 79.5 65.0 71.6 63.6 80.1 61.2 79.8 68.1 79.3 63.2
Syntagrank 72.8 51.1 74.1 46.0 61.1 36.4 74.2 42.7 76.6 59.6 73.2 48.8
Generationary 79.0 59.3 75.0 58.4 69.2 63.6 79.9 53.4 78.3 63.8 77.4 59.1
ESC 82.4 71.1 78.9 64.2 76.8 66.7 83.3 67.0 83.4 78.7 81.5 68.8
ESR 81.2 63.0 79.9 60.6 76.5 57.6 81.4 58.3 82.6 78.7 80.7 63.4
SemEq-Base 82.6 64.4 80.6 63.5 75.4 63.6 83.1 54.4 82.3 78.7 81.6 63.9
SS-WSD 75.7 56.3 74.0 56.9 64.9 54.5 78.3 64.1 81.1 74.5 75.9 61.4

EWISER [4], KWSD [33], ARES [24], Syntagrank [25], Generationary [3], ESR [27],
ESC [2], SemEq-Base [34] and SS-WSD [15]. In addition, the basis for select-
ing the above models is that the above WSD models all used the evaluation
framework published by Navigli et al. [22] to implement experiments, that is,
the original evaluation framework.

Results and Analysis: The experimental results of the models are obtained
by counting the intermediate files published in the original papers. Based on the
division of high- and low-frequency word senses in the constructed evaluation
framework, the experimental results of high- and low-frequency word senses in
the corresponding dataset are calculated respectively.

The experimental results are shown in Tab. 2. Experimental results show
that the performance of all WSD models on long-tail word senses (that is, low-
frequency word senses) is much lower than the performance on high-frequency
word senses, and the difference is about 20 percentage points. And the recogni-
tion accuracy of long-tail word senses is in the range of 60 percentage points and
below. This phenomenon shows that the current mainstream WSD models can-
not effectively identify long-tail word senses, and also proves that it is necessary
and meaningful to publish an evaluation framework that distinguishes high- and
low-frequency word senses.

In addition, the recognition accuracy of high-frequency word senses is not
high, falling below 80 percentage points. This phenomenon shows that even the
high-frequency word sense disambiguation task is not a solved task as people
say.
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4.2 LLMs under The Evaluation Framework

Testing the encoding ability of LLMs: To test the ability of LLMs to encode
or represent long-tail word senses, we construct WSD models based on LLMs
to encode glosses. These experiments can test the learning ability of LLMs for
low-resource tasks.

Fig. 2. WSD model based on LLMs to encode glosses to test the encoding or repre-
sentation ability of LLMs.

Experimental models: The constructed WSD model is shown in Fig. 2.
We use the pre-trained language model BERT [8] as the encoder to encode the
target text containing the target word to obtain the representation of the target
word, that is, the target word representation. The encoder that encodes the tar-
get word is called the target word encoder. We take the vector corresponding to
the target word in the output of the encoder as the target word representation.
If the target word contains multiple words, the corresponding output vectors are
summed and averaged as the target word representation. We choose the main-
stream LLMs, including LLaMA-1 [29], LLaMA-2 [30], LLaMA-3, Vicuna [7]
and Falcon LLM [43], as the encoder to encode the glosses corresponding to the
target word to obtain the representation of the word senses, that is, the word
sense representation. The encoder that encodes the glosses is called the word
sense encoder. We train the word sense encoder by adding a label [CLS] to the
end of the input text, and the vector corresponding to the label [CLS] in the
output of the encoder is regarded as the word sense representation. Then the
similarity between the target word representation and each word sense represen-
tation is calculated, and the gloss corresponding to the highest similarity is the
word sense of the target word.

It should be emphasized that the target word encoder obtains the word em-
bedding of the target word, while the gloss encoder obtains the text embedding
of the glosses. By using the above multiple LLMs as the word sense encoder,
multiple experimental models are constructed.

Experimental settings: During the implementation process, the LLMs
used in the above experimental models are fine-tuned. The training set used
for fine-tuning is SemCor, the learning rate is 1e-5, the context batch size is
32, the gloss batch size is 128, and the epoch is 20. In addition, LLMs used to
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construct the experimental models respectively are the 7B and 13B versions of
LLaMA-1, the 7B, Chat 7B, 13B and Chat 13B versions of LLaMA-2, the 8B
and Chat 8B versions of LLaMA-3, the 7B and 13B versions of Vicuna, and the
7B version of Falcon LLM. The version used by the pre-trained language model
BERT is bert-base-uncased. For other information about the models and hyper-
parameter settings that are not given in the paper, please see the code posted
on the website where the evaluation framework is published.

Table 3. Experimental results of WSD models constructed by LLMs as the encoders
under the constructed evaluation framework: HF and LF refer to the experimental
results under high- and low-frequency word senses respectively.

Senseval-2 Senseval-3 Semeval-07 Semeval-13 Semeval-15 ALL
WSD Models HF LF HF LF HF LF HF LF HF LF HF LF
LLaMA-1 7B 63.20 33.33 62.81 40.15 62.56 42.42 56.07 35.92 59.69 48.94 59.85 34.99
LLaMA-1 13B 58.92 30.37 62.52 37.23 57.35 27.27 52.63 27.18 59.18 48.49 58.43 32.96
LLaMA-2 7B 64.93 37.04 68.07 40.15 62.56 39.39 58.01 34.95 63.28 46.81 63.66 39.73

-chat 7B 63.95 36.30 69.59 43.07 62.09 48.48 58.53 37.86 64.10 48.94 63.95 41.76
LLaMA-2 13B 65.95 37.04 69.12 43.80 63.98 36.36 59.77 43.69 64.82 51.06 64.88 44.24

-chat 13B 66.28 38.52 69.47 45.26 63.51 39.39 59.57 41.75 64.21 51.06 64.96 44.02
LLaMA-3 8B 62.51 37.78 67.72 39.42 59.00 39.39 59.18 34.95 62.67 53.19 62.79 39.95

-chat 8B 62.65 37.04 67.43 37.23 57.35 39.39 58.14 33.98 61.95 53.19 62.29 39.28
Vicuna 7B 63.48 35.56 66.49 44.53 63.27 36.36 58.40 33.98 60.62 46.81 62.54 40.41
Vicuna 13B 64.93 37.04 69.59 43.07 63.51 36.36 58.79 37.86 65.23 48.94 64.48 42.44
Falcon 7B 62.51 40.00 66.55 38.69 60.19 33.33 57.75 30.10 63.79 53.19 62.45 38.15

Results and Analysis: The experimental results of the WSD models are
shown in Tab. 3. The analysis of high- and low-frequency word sense recognition
results is as follows:

From the overall performance, the recognition accuracy of high-frequency
word senses remains between 50 and 70 percentage points, which is consistent
with the results of models not based on LLMs. This phenomenon shows that
LLMs have certain coding capabilities and can be used for text representation
learning tasks. At the same time, it also shows that LLMs have certain encoding
and understanding capabilities for high-frequency word senses. The shortcoming
is that LLMs use a large amount of pre-training data but still do not improve the
final recognition accuracy, indicating that a large amount of pre-training data
has no substantial significance in improving the recognition of high-frequency
word senses.

From the overall performance, the recognition accuracy of low-frequency word
senses remains between 30 and 50 percentage points, which is far lower than the
results that can be given by models not based on LLMs. This phenomenon
shows that the ability of LLMs to encode or represent long-tail word senses is
weak, and it further illustrates that there are still deficiencies in the language
understanding ability of LLMs. It is understandable that the training data of
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LLMs is some commonly used non-professional training corpus, in which the
examples of long-tail word senses are lacking or account for a small proportion,
resulting in the trained LLMs not having effective encoding and representation
capabilities under low resource conditions.

Testing the understanding ability of LLMs: To test the ability of LLMs
to understand long-tail word senses, we construct WSD models based on LLMs
to generate glosses of target words. These experiments can test the language
understanding ability of LLMs.

Fig. 3. WSD model based on LLMs to generate glosses to test the language under-
standing ability of LLMs.

Experimental models: The constructed WSD model is shown in Fig. 3. We
choose the mainstream LLMs, including LLaMA-1 [29], LLaMA-2 [30], LLaMA-
3, Vicuna [7], Gemma [42] and Falcon LLM [43], as the gloss generator of the
target word to obtain the gloss based on the input text containing the target
word, then use the pre-trained language model BERT [8] as the gloss encoder
to separately encode the generated gloss and the known glosses to obtain the
corresponding word sense representations, and finally calculate the similarity
between the generated word sense representation and each known word sense
representation, among which the gloss corresponding to the highest similarity
is the word sense of the target word. The vector corresponding to the label
[CLS] output by the pre-trained language model BERT is used as a word sense
representation.

It should be emphasized that the gloss encoder obtains the text embedding
of the glosses. During the implementation process, the two gloss encoder do not
share the same pre-trained language model BERT, but use their own pre-trained
language model BERT respectively. By using the above multiple LLMs as the
gloss generator, multiple experimental models are constructed.

Experimental settings: During the implementation process, the LLMs
used in the above experimental models are fine-tuned. The training set used
for fine-tuning is SemCor, the learning rate is 2e-6, the batch size is 4, and the
epoch is 20. The pre-trained language model BERT also participates in fine-
tuning, with the learning rate of 1e-5, the context batch size of 4, the gloss batch
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size of 256 and the epoch of 20. In addition, LLMs used to construct the ex-
perimental models respectively are the 7B and 13B versions of LLaMA-1, the
7B, Caht 7B, 13B and Chat 13B versions of LLaMA-2, the 8B and Caht 8B
versions of LLaMA-3,the 7B and 13B versions of Vicuna, the 2B and 7B ver-
sions of Gemma and the 7B version of Falcon LLM. The version used by the
pre-trained language model BERT is bert-base-uncased. For other information
about the models and hyperparameter settings that are not given in the paper,
please see the code posted on the website where the evaluation framework is
published.

Table 4. Experimental results of WSD models based on LLMs to generate glosses
under the constructed evaluation framework: HF and LF refer to the experimental
results under high- and low-frequency word senses respectively.

Senseval-2 Senseval-3 Semeval-07 Semeval-13 Semeval-15 ALL
LLMs HF LF HF LF HF LF HF LF HF LF HF LF
Gemma 2B 51.66 31.85 46.88 28.83 39.81 37.88 49.06 33.01 56.21 41.49 48.18 33.41
Gemma 7B 62.90 46.67 59.19 36.50 54.98 43.94 55.55 38.83 62.82 39.36 59.79 41.20
LLaMA-2 7B 68.82 42.96 68.16 39.42 63.74 45.45 58.92 48.54 71.64 62.77 66.52 43.00

-chat 7B 71.94 54.81 72.12 46.72 59.60 39.39 61.52 45.63 70.72 61.70 68.81 48.87
LLaMA-2 13B 68.56 48.52 67.25 45.99 61.61 43.94 61.71 46.60 69.38 62.77 66.40 46.50

-chat 13B 72.17 52.96 70.72 47.45 61.73 37.88 62.49 47.57 70.46 61.70 68.98 49.55
LLaMA-3 8B 59.25 33.33 59.05 40.15 49.88 36.36 50.68 33.98 61.08 57.45 56.75 37.70

-chat 8B 69.03 47.78 68.21 45.26 52.49 45.45 50.68 33.98 66.41 57.45 54.05 33.18
Vicuna 7B 59.43 42.22 58.61 35.04 54.50 40.91 54.32 33.01 62.31 37.23 57.63 37.13
Vicuna 13B 52.07 37.41 50.73 31.02 42.77 28.79 49.06 36.89 55.85 40.43 51.23 36.12
Falcon 7B 59.85 39.26 55.81 31.02 52.96 33.33 55.55 33.01 64.97 53.19 58.73 37.25

Results and Analysis: The experimental results of the WSD models are
shown in Tab. 4. The analysis of high- and low-frequency word sense recognition
results is as follows:

From the overall performance, the recognition accuracy of high-frequency
word senses remains between 50 and 70 percentage points, which is lower than
the results of models not based on LLMs, and also lower than the results of
models with LLMs as encoders. This phenomenon shows that LLMs have a
certain ability to understand high-frequency word senses, but it cannot effectively
provide word sense description information, that is, word sense definition, which
further illustrates that the language expression ability of LLMs is insufficient.
We provide further experimental analysis on this issue in the next section. In
fact, giving a definition of word sense is a difficult task. It not only requires
LLMs to have an accurate understanding of word sense, but also requires LLMs
to have the ability to accurately summarize.

From the overall performance, the recognition accuracy of low-frequency word
senses remains between 30 and 50 percentage points, which is much lower than
the results of models not based on LLMs, and is consistent with the results
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of models with LLMs as encoders. This phenomenon shows that the ability of
LLMs to understand long-tail word senses is weak, and it also reflects that the
ability of LLMs to define and summarize long-tail word senses is weak. The
reason why LLMs have a weak ability to understand long-tail word senses is
that the training data for training LLMs contains fewer examples of long-tail
word senses, and at the same time, the small proportion of low-resource training
data is ignored during the model training process. The weak ability of LLMs to
summarize the definition of long-tail word senses is also due to the fact that the
training data of LLMs contains fewer examples of long-tail word senses, so they
cannot summarize the definitions of long-tail word senses.

Testing the expression ability of LLMs: To test the ability of LLMs to
leverage long-tail word senses, we construct WSD models based on LLMs to
generate example sentences with target words. These experiments can test the
language expression ability of LLMs.

Fig. 4. WSD model based on LLMs to generate example sentences to test the language
expression ability of LLMs.

Experimental models: The constructed WSD model is shown in Fig. 4. We
choose the mainstream LLMs, including Gemma [42], LLaMA-2 [30], LLaMA-
3, Vicuna [7] and Falcon LLM [43], as the example sentence generator of the
target word to obtain the example sentence based on the input text containing
the target word, then use the pre-trained language model BERT [8] as the en-
coder to encode the generated the example sentence and the glosses to obtain
the corresponding target word representation and gloss representations, and fi-
nally calculate the similarity between the target word representation and each
word sense representation, among which the gloss corresponding to the highest
similarity is the word sense of the target word. The vector corresponding to the
label [CLS] output by the pre-trained language model BERT is used as a word
sense representation. The vector corresponding to the target word output by the
pre-trained language model BERT is used as the target word representation. If
the target word contains multiple words, the corresponding output vectors are
summed and averaged as the target word representation.
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It should be emphasized that the target word encoder obtains the word em-
bedding of the target word, while the word sense encoder obtains the text embed-
ding of the glosses. During the implementation process, the two encoder do not
share the same pre-trained language model BERT, but use their own pre-trained
language model BERT respectively. By using the above multiple LLMs as the
example sentence generator, multiple experimental models are constructed.

Experimental settings: During the implementation process, the LLMs
used in the above experimental models are fine-tuned. The training set used
for fine-tuning is SemCor, the learning rate is 2e-6, the batch size is 4, and the
epoch is 20. The pre-trained language model BERT also participates in fine-
tuning, with the learning rate of 1e-5, the context batch size of 4, the gloss batch
size of 256 and the epoch of 20. In addition, LLMs used to construct the ex-
perimental models respectively are the 2B and 7B versions of Gemma, the 7B,
Chat 7B, 13B and Chat 13B versions of LLaMA-2, the 8B and Chat 8B versions
of LLaMA-3, the 7B and 13B versions of Vicuna, and the 7B version of Falcon
LLM. The version used by the pre-trained language model BERT is bert-base-
uncased. For other information about the models and hyperparameter settings
that are not given in the paper, please see the code posted on the website where
the evaluation framework is published.

Table 5. Experimental results of WSD models based on LLMs to generate example
sentences under the constructed evaluation framework: HF and LF refer to the exper-
imental results under high- and low-frequency word senses respectively.

Senseval-2 Senseval-3 Semeval-07 Semeval-13 Semeval-15 ALL
LLMs HF LF HF LF HF LF HF LF HF LF HF LF
Gemma 2B 43.27 23.53 56.66 34.55 52.36 38.10 54.77 32.04 55.33 57.14 51.30 34.55
Gemma 7B 55.28 26.47 60.41 40.00 58.55 38.10 60.09 40.78 58.20 57.14 57.72 40.91
LLaMA-2 7B 53.21 29.41 57.22 32.73 64.36 33.33 55.81 30.10 52.05 42.86 54.02 30.91

-chat 7B 51.97 29.41 61.73 36.36 60.73 42.86 70.08 43.69 59.43 57.14 57.91 38.18
LLaMA-2 13B 54.45 35.29 57.60 27.27 63.27 47.62 56.33 29.13 56.15 57.14 55.64 27.27

-chat 13B 56.52 32.35 64.35 43.64 61.82 38.10 59.25 36.89 63.93 57.14 61.02 43.64
LLaMA-3 8B 72.75 50.37 67.13 42.34 66.59 42.42 66.39 35.92 67.18 48.94 67.67 44.02

-chat 8B 72.15 53.33 67.89 37.23 63.98 42.42 66.90 34.95 69.03 46.81 68.16 41.53
Vicuna 7B 54.04 32.35 62.85 36.36 62.55 42.86 59.25 37.86 60.25 57.14 59.27 40.91
Vicuna 13B 55.07 32.35 63.79 45.45 63.27 38.10 60.42 36.89 61.48 57.14 60.38 42.73
Falcon 7B 67.44 46.67 66.14 45.26 57.35 39.39 65.35 37.86 67.90 46.81 66.09 42.89

Results and Analysis: The experimental results of the WSD models are
shown in Tab. 5. The analysis of high- and low-frequency word sense recognition
results is as follows:

This part of the experiment can test the ability of LLMs to understand and
leverage high-frequency word senses. However, from the overall performance, the
LLMs are still unable to leverage high-frequency word senses well in complex
scenarios. This phenomenon shows that in complex scenarios, LLMs still cannot
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correctly understand and leverage common word senses at the vocabulary level.
It reveals that LLMs only generate content based on language inertia and do not
have a deep understanding of the training data. This phenomenon also shows
that in future research work, it is necessary to enable LLMs to better learn the
inherent meaning of language from the lexical level, so that LLMs have excellent
language understanding and expression capabilities.

This part of the experiment can test the ability of LLMs to understand
and leverage long-tail word senses, but from the overall performance, the LLMs
have not yet reached expectations. We believe that giving LLMs the ability to
understand and leverage long-tail word senses requires research starting from the
core structure of the model. The current LLMs based on pre-training methods
will inevitably lead to the neglect of long-tail word senses, because long-tail word
senses are extremely scarce in the training data, and it is impossible to make
LLMs pay attention to low-resource samples during the training phase.

5 Conclusions

To promote and facilitate the development of long-tail Word Sense Disambigua-
tion (WSD) and Large Language Models (LLMs), this paper releases an eval-
uation framework that distinguishes high- and low-frequency word senses. For
WSD, the framework can distinguish the recognition accuracy of the WSD mod-
els in identifying high- and low-frequency word senses, and then design the mod-
els in a targeted manner. For LLMs, the framework can detect the word richness,
language understanding and expression capabilities of the language models at
the vocabulary level, and then design solutions with clear goals. Based on the
framework, this paper tests the accuracy of the WSD models proposed by previ-
ous researchers for long-tail sense recognition. The results show that the long-tail
WSD task still has a long way to go. And this paper tests the ability of LLMs
to encode, understand, and leverage long-tail senses under the framework. The
results show that LLMs cannot effectively deal with long-tail word senses.
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