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Abstract. The long-tail phenomenon of word sense distribution in lin-
guistics causes Word Sense Disambiguation (WSD) to face both head
senses with a large number of samples and tail senses with only a few
samples. Traditional recognition methods are suitable for head senses
with sufficient training samples, but they cannot effectively deal with tail
senses. Inspired by the diverse memory and recognition abilities of chil-
dren’s linguistic behavior, we propose a bi-matching mechanism approach
for WSD. Considering that tail senses are often presented in the form of
fixed collocations, a collocation feature matching method suitable for tail
senses is designed; the traditional definition matching method is used for
head senses; finally, the two matching methods are combined to construct
a WSD model with the bi-matching mechanism (called Bi-MWSD). Bi-
MWSD can effectively combat the difficulty of identifying the tail senses
due to insufficient training samples. The experiments are implemented
in the standard English all-words WSD evaluation framework and the
training data augmented evaluation framework. The experimental results
outperform the baseline models and achieve state-of-the-art performance
under the data augmentation evaluation framework.

Keywords: Word Sense Disambiguation - Long Tail Senses - Bi-matching
Mechanism.

1 Introduction

Word Sense Disambiguation (WSD) is to assign the correct sense to the target
word according to the given context [1,2]. WSD occupies an important position
in the field of Natural Language Processing (NLP) [3], and the correct identifi-
cation of word senses has a direct and profound impact on subsequent semantic
understanding tasks, such as machine translation [4,5] and natural language
understanding |6, 7].

However, due to the long-tail phenomenon of word sense distribution in lin-
guistics, the WSD model needs to face both head senses with a large number of
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samples and tail senses with only a few samples [8, 9]. For example, the verb form
of the word Play* has 35 senses in WordNet 3.1, of which the most commonly
used is " Participate in games or sports", and the vast majority are rarely used
tail senses, such as " Contend against an opponent in a sport, game, or battle". In
addition, due to the long-tail phenomenon of vocabulary usage frequency in lin-
guistics, the occurrence frequency of tail senses is severely reduced, which makes
it more difficult for the WSD model to identify long-tail senses. Note that the
long-tail senses here refer to the tail senses under the long-tailed distribution.

Traditional recognition methods can effectively deal with head senses with
sufficient training samples, but it is difficult to take into account tail senses with
insufficient training samples. BEM, proposed by Blevins et al. [10], attempts
to employ BERT [11] to obtain a context-based embedding of the target word,
and then determines possible sense by calculating the similarity between this
embedding and the textual embedding of each gloss. For head senses, this method
can obtain effective sense representations, but for tail senses, it is difficult to
obtain highly recognizable representations. The reason is that embeddings of all
senses can be easily obtained based on glosses, but it is difficult to effectively
improve the accuracy of embeddings when training samples are lacking or not.
GlossBERT, proposed by Huang et al. [12], combines the sentence containing
the target word with each gloss separately to obtain shared embeddings, and
then treats the WSD task as a sentence-level classification task to achieve word
sense recognition. This method has similar drawbacks to BEM, that is, it is
difficult to obtain reliable representations when training samples are lacking or
not. In addition, some researchers attempt to treat the WSD task as a few-shot
learning problem to deal with insufficient training samples for tail senses. For
example, Holla et al. [13] propose a meta-learning framework to deal with few-
shot WSD, which aims to learn features from labeled instances to disambiguate
unseen words. See also Refs. [14,8,9].

Inspired by the diverse memory and recognition abilities of children’s linguis-
tic behavior [15] (see Sec. 3.2 for a detailed analysis), we propose a bi-matching
mechanism approach for WSD. Analysis of a large number of tail senses finds
that tail senses are mostly presented in the form of fixed collocations, that is,
they often appear together with fixed words or often appear in fixed contexts.
This is also the main reason for insufficient samples of tail senses. Considering
that the collocation words of tail senses are fixed, and the collocation words
are clear, this paper proposes a collocation feature matching method to combat
the challenge of insufficient training samples of tail senses. This paper extracts
collocation words from the example sentences provided by the corresponding
word senses in the dictionary, and collectively calls them the collocation feature.
When there are multiple example sentences, the collocation feature integrates
all the collocation words in the example sentences; when there is no example
sentence, the collocation feature directly uses the gloss instead. Considering the
outstanding performance of definition matching in traditional recognition meth-
ods, this paper adopts traditional definition matching to deal with head senses.

4 http://wordnetweb.princeton.edu/perl /webwn?s=play
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Finally, the two matching methods together constitute a WSD model with the
bi-matching mechanism.
The contributions of this paper are summarized as follows:

— By mining the characteristics of long-tail senses, a collocation feature match-
ing method against insufficient training samples of tail senses is proposed.

— Inspired by the diverse memory and recognition abilities of children’s linguis-
tic behavior, a WSD model with the bi-matching mechanism is constructed,
which fills the gap of using different matching methods for head and tail
senses.

— The experiments are carried out under the evaluation framework of En-
glish all-words WSD, and the experimental results are better than the base-
line models. Moreover, state-of-the-art performance is achieved under data-
augmented evaluation framework.

Codes and pre-trained models are available at https://github.com/yboys0504 /wsd.

2 Related Work

In the early development of WSD, researchers did not focus on long-tail senses,
but more on dealing with all senses by adopting a unified approach. During
this period, WSD models used a single recognition method to complete the
recognition process at the end of the model [3, 1]. These recognition methods are
also often used in other tasks in NLP, so we call them traditional recognition
methods. Subsequently, with the continuous improvement of the overall level
of WSD models, long-tail senses became the bottleneck of development, and
researchers began to focus on few-shot learning methods to combat long-tail
senses [14, 16].

2.1 Traditional Recognition Methods for WSD

According to the classical classification method, WSD models can be roughly di-
vided into two categories, namely supervised models and knowledge-based mod-
els.

Supervised models usually employ a deep network structure to process
the target word with context, and connect a classifier at the end of the model to
calculate the probability of each sense [17,18]. For example, Recurrent Neural
Network (RNN) suitable for sequence features is often used to build the core
network structure of the WSD models, and a fully connected layer with normal-
ization constraints is added as a classifier in the output layer [19, 20]. Subsequent
WSD models based on pre-trained language models only replace the core network
structure with pre-trained models, but the classifiers are still implemented using
a traditional fully connected layer [21-23]. The reason why supervised models
are accustomed to this design is that the model can be trained end-to-end as a
whole.
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Knowledge-based models attempt to employ external knowledge to im-
prove the recognition rate of WSD models, such as dictionary knowledge [10,
24], semantic network knowledge [25,27], and multilingual knowledge [28, 21].
Among them, glosses in the dictionary are often trained as text embeddings to
replace word sense labels [10, 26, 9]. Such definition matching methods are good
for identifying head senses, but they are not good for identifying tail senses.
The fundamental reason is that tail senses often appear in the form of fixed
collocations and they are difficult to give a clear definition.

2.2 Few-shot Learning Methods for WSD

Subsequently, the researchers realized the importance of long-tail senses in WSD,
and adopted some targeted solutions for tail senses, such as meta-learning, zero-
shot learning, reinforcement learning, etc. Holla et al. [13] proposed a meta-
learning framework for few-shot WSD, where the goal is to learn features from
labeled instances to disambiguate unseen words. See also Refs. [14, 16]. Blevins
et al. [10] noticed the long-tail phenomenon of word sense distribution, and
proposed a dual encoder model, that is, one BERT is used to extract the word
embedding of the target word with contextual information, and another BERT
is used to obtain the text embeddings of the glosses. The innovation of this work
is that the model adopts a joint training mechanism of dual encoders, but the
disadvantage is that the model still adopts a single matching method to deal
with both head and tail senses.

3 Methodology

In this section, we first formalize the WSD task, then clarify the cognitive basis
of the bi-matching mechanism derived from children’s literacy behavior, and
finally describe the structure of our model in the formal language.

3.1 Word Sense Disambiguation

WSD is to predict the senses of the target word in a given context [1,2]. The
formal definition can be expressed as: the possible sense s € Sy of the target
word w0 in the given context Cy is formally described as

f(’tf),cqj,) =se€ Sy (1)

where f(-) refers to the WSD model, and Sy is the candidate list of the senses
of the target word.

All-words WSD is to predict all ambiguous words in a given context [1,2].
This means that the WSD model may predict the noun, verb, adjective, and
adverb forms of ambiguous words. In this case, the input and output of the
WSD model are defined as C' = (...,w;,...) and S = (..., s}, ,...), respectively,
where s, represents the 2" sense of the target word w;.
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3.2 Cognitive Basis of Bi-matching Mechanism

Masaru Ibuka [15], a Japanese educator, pointed out that children’s literacy
behavior is mainly based on mechanical memory and recognition ability in the
early stage, and then gradually develops concept-oriented memory and recog-
nition ability in the later stage. The mechanical method rigidly remembers the
structure of the word itself and its application scenarios, such as collocation fea-
tures of words. The concept-oriented method establishes the relationship between
the structure, meaning, and usage of words through analysis and comparison,
such as the definitions given in the dictionary.

For the WSD task, we should not only pay attention to head senses with
a large number of samples, but also tail senses with only a few samples, be-
cause long-tail senses are an important bottleneck for the development. For head
senses, it is reasonable to distinguish senses through the definition system, be-
cause theoretically, the definition system of word senses can clearly distinguish
different head senses. But for tail senses, it is difficult to define a clear and
non-confusing definition system for each sense. For example, " Go to plant fish",
where the word plant means " Place into a river". This sense of the word plant
mostly appears in such a collocation form. Therefore, considering the character-
istics of tail senses, the collocation feature matching method is more suitable for
identifying tail senses.

In this paper, we propose a bi-matching mechanism approach to construct
a WSD model (called Bi-MWSD), namely the collocation feature match-
ing method for tail senses and the definition matching method for head
senses. We describe the construction details and operation process of Bi-MWSD
in Sec. 3.3.

3.3 Bi-matching Mechanism for WSD

The architecture of Bi-MWSD is shown in Fig. 1. B-MWSD uses two pre-trained
language models as text feature encoders, and the pre-trained model adopts the
widely used BERT [11]. One encoder is used to extract the collocation features
of the target word in the training samples and the example sentences, which is
called the collocation feature encoder. The other is used to learn the defi-
nition system in the glosses of the target word, which is called the definition
encoder. The example sentences and glosses come from the examples and def-
initions corresponding to each sense in WordNet. The last step is the matching
process of head senses and tail senses, which is called word sense matching.

Collocation Feature Encoder: The function of the collocation feature en-
coder is to memorize the collocation features of the target word, such as the
structure and relationship between the target word and the collocation words,
and the entire application scenario. The encoder process two kinds of texts:

— One is the example sentences corresponding to each sense of the target word
in WordNet, E® = (...,e},...) where e} represents the k" word of the exam-
ple sentence E® of the x'" sense of the target word.
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Fig. 1. Schematic diagram of the Bi-MWSD architecture, which illustrates the disam-
biguation process of the target word Plant. The collocation feature encoder is used
to encode target words and example sentences; the definition encoder is only used to
encode glosses. The symbol ® represents the dot product of matrices.

— And the other is the training samples containing the target word, C' =
(...,w;, ...) where w; represents the i*" word.

The texts are encoded using BERT standard processing rules, that is, adding
[CLS] and [SEP] marks at the beginning and end of the text respectively, such
as

E* =(|[CLS),...,e},...,|SEP]) (2)
= (€851 > €hoy -1 Cgep) - (3)

The processing method of the training samples is also the same. The encoder
encodes each word, including the added [C'LS] and [SEP], to obtain a corre-
sponding 768-dimensional vector.

The reason why we use one encoder to process two kinds of texts here is that
both the example sentences and the training samples contain the target word,
which can all be considered that there are collocation features of the target word.
Moreover, the advantage of this processing is that the training sample will truly
reflect the frequency of each sense of the target word, and the example sentences
can provide the collocation features of tail senses. Processing them together can
make up for the lack of scene information of tail senses, but it will not (seriously)
change their frequency. In WordNet 3.0, sometimes multiple example sentences
are given for one sense, and we integrate all the example sentences by default;
when no example sentences are given, we use the embedded representation of
the gloss instead.
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After processing by the collocation feature encoder, we can get the vector
representation of the target word in the training sample, which is defined as
vy, and the vector representation of the collocation features of each sense x
provided by the example sentences, which is defined as Vg«. vy is the vector
representation corresponding to the target word in the output of the pretrained
model BERT. For Vg=, we here provide two calculation methods, namely the
overall text vector minus the target word vector,

VE’I = ’Uezls — ’Uez, (4)

and the vectors except the target word vector are added,
VE’I = Z Uelk' — ’Uez;). (5)
k

Through experimental analysis of these two methods, we find that the first one
is relatively better. The possible reason is that it can not only characterize the
collocation features of the target word, but also remember the entire text, namely
the application scenario.

Definition Encoder: The definition encoder constructs the definition system
of the target word by learning the glosses G* for each sense x in WordNet,
G" = (..., g7,...) where g7 represents the j word of the gloss text of the z*"
sense of the target word. The glosses are simple and accurate generalizations of
word senses and are therefore suitable for refining the definition system of the
target word. What needs to be emphasized here is that the target word itself is
not included in the glosses, so glosses cannot be used to extract the collocation
features of the target word. Following standard processing rules of BERT, [C'LS]
and [SEP] marks are also added for the glosses,

GQC

(CLS), ... ", .. [SEP)) (6)

= (Getsr =95 > -+ Giep)- (7)
The encoder encodes each word, including the added [CLS] and [SEP], to obtain
a corresponding 768-dimensional vector. Here we choose the output vector corre-

sponding to [CLS], i.e., vg= , to represent the entire gloss text, i.e., Vg = vge, .
This method is a common practice in the industry.

Word Sense Matching: At this point, we can calculate the score of each sense
of the target word  in a given context C,

Score(w|C) = F({vy © (aVge + fVE=)}") (8)

where « and f respectively represent the proportion of the definition match-
ing method and the collocation feature matching method. F(-) can be a stan-
dard Softmazx or other distribution function. When F(-) is selected as Softmaz,
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Score(w|C) is a probability distribution of all senses of the target word in a given
context. Finally, we can conclude that the one with the highest probability is
the most likely sense.

Here a and S can be the weights learned by the model itself, or they can
be the proportions of each sense provided by WordNet. Through experimental
analysis, we find that they work best when they are set to the same value. It
needs to be explained that it is difficult to know in advance which sense of the
target word is, so it is appropriate to use the equal probability method, that is,
the possibility of the head sense or the tail sense is the same.

Parameter Optimization: We use a cross-entropy loss on the scores of the
candidate senses of the target word to train Bi-MWSD. The loss function is

Loss(Score, index) ©
exp(Score[indez])

% <Zi—1 eXp(Score[Z]) (10)

S 10 s Seorl) o

i=1

where index is the index of the list of the candidate senses of the target word.

Bi-MWSD employs an Adam optimizer [29] to update the parameters of the
model, and the specific settings of the optimizer are given in the experimental
section.

4 Experiments

4.1 Datasets and Evaluation Metrics

Bi-MWSD adopts the unified evaluation framework of English all-words WSD
proposed by Raganato et al. [1] to implement training and evaluation. In the
standard evaluation experiment, the training set is SemCor®; in the evalu-
ation experiment under data augmentation, the training set is SemCor and
WNGTS (WordNet Gloss Tagged). Following common practice, SemEval-2007
(SE0T7; [30]) is designated as the development set, and Senseval-2 (SE2; [31]),
Senseval-3 (SE3; [32]), SemEval-2013 (SE13; [33]), and SemEval-2015 (SE15; [34])
are used as the test sets. The statistical information of each dataset is shown
in Tab. 1. Also, we concatenate the development set and all the test sets to
reconstruct the test sets of verbs (V'), nouns (N), adjectives (A), and adverbs
(R), and treat them as a whole as a test set (ALL).

In this paper, we select all word senses in WordNet 3.0 [35] as candidate
senses of the target word. All experimental results in the figures and tables are
reported as a percentage of the Fl-score.

® http://lcl.uniromal.it /wsdeval /training-data
5 https://wordnetcode.princeton.edu/glosstag.shtml
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Table 1. Statistics of the datasets: the number of documents (Docs), sentences (Sents),
tokens (Tokens), sense annotations, sense types covered, annotated lemma types cov-
ered and ambiguity level in each dataset, where the ambiguity level implies the difficulty
of the dataset.

Dataset ‘Docs Sents Tokens |Annotations Sense types Lemma types Ambiguity

SE2 3 242 5,766 2,282 1,335 1,093 5.4
SE3 3 352 5,541 1,850 1,167 977 6.8
SE07 3 135 3,201 455 375 330 8.5
SE13 13 306 8,391 1,644 827 751 4.9
SE15 4 138 2,604 1,022 659 512 5.5

4.2 Baseline Models

To evaluate the comprehensive performance of Bi-MWSD in the community,
we select state-of-the-art models in the past three years, including LMMS [36],
EWISE [9], and GlossBERT [12] in 2019, SREF [37], ARES [26], EWISER |[3§],
BEM [10], and SparseLMMS [39] in 2020, and COF [40], ESR [41], Multi-
Label [42], and SACE [43] in 2021. All experimental results of the above models
are taken from the data published in the original paper.

From these, we select three most comparable models as baseline models,
which are GlossBERT [12] with similar external resources, BEM [10] with sim-
ilar framework structure, and Multi-Label [42] with multi-label classification
method. GlossBERT and BEM employ typical and traditional word sense recog-
nition methods. GlossBERT employs a fully connected layer with normaliza-
tion constraints as the output layer of the model. BEM implements word sense
matching by calculating the similarity between the target word vector and the
definition vectors. Multi-Label designs the WSD model as a multi-label classifi-
cation task. Although this method has the ability to match multiple times, it is
not the same as the bi-matching mechanism proposed in this paper.

In addition, we select three models as baselines for the evaluation experi-
ment under data augmentation, which are SparseLMMS [39], EWISER (38|, and
ESR [41].

4.3 Experimental Setting

The hardware platform of Bi-MWSD is Ubuntu 18.04.3, which installs two GPUs
whose version is NVIDIA Tesla P40. The development platform is Python 3.8.37,
and the learning framework is Pytorch 1.8.18. The pre-trained language model
is provided by Transformers 4.5.1°. Under the standard evaluation exper-
iment, the encoders of Bi-MWSD use BERT-base-uncased; under the evalu-
ation experiment of data augmentation, the encoders of Bi-MWSD use

" https://www.python.org/
8 https://pytorch.org/
9 https://huggingface.co/transformers,/v4.5.1/
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BERT-large-uncased. The hyperparameter Learning Rate, Context Batch Size,
Gloss Batch Size, Epochs, Context Maximum Length and Gloss Mazimum Length
of the model are set to [1E-5,5E-6,1E-6], 4, 256, 20, 128 and 32, respectively.
Super-parameters not listed are given in the published code.

Table 2. Fl-score (%) on the English all-words WSD task. Dev refers to the devel-
opment set, and N, V, A, R, and ALL refer to the nouns, verbs, adjectives, adverbs,
and overall datasets constructed by concatenating the development set and the test
sets, respectively. The experimental results are organized according to the standard
evaluation experiment (that is, Training data: SemCor) and the evaluation experiment
under data augmentation (that is, Training data: SemCor + WNGT). The underlined
and the bolded results refer to the overall and the regional best results, respectively.

Model

Dev Test sets Concatenation

SE07||SE2 SE3 SE13SE15| N VA R [ALL

Training data: SemCor

Prior work

LMMS (ACL, 2019, [36]) 68.1 |76.3 75.6 75.1 77.0| - - - - | 754
EWISE (ACL, 2019, [9]) 67.3 |73.8 71.1 69.4 74.5|/74.0 60.2 78.0 82.1|71.8
SREF (EMNLP, 2020, [37]) 72.1 (|78.6 76.6 78.0 80.5(/80.6 66.5 82.6 84.4|77.8
ARES (EMNLP, 2020, [26]) 71.0 |78.0 77.1 77.3 83.2|/80.6 68.3 80.5 83.5|77.9
EWISER (ACL, 2020, [38]) 71.0 || 78.9 78.4 78.9 79.3||81.7 66.3 81.2 85.8|78.3
COF (EMNLP, 2021, [40]) 69.2 [|76.0 74.2 78.2 80.9|/80.6 61.4 80.5 81.8|76.3
ESR (EMNLP, 2021, [41]) 75.4 (|80.6 78.2 79.8 82.8(/82.5 69.5 82.5 87.3|79.8
SACE (ACL, 2021, [43]) 74.7 |180.9 79.1 82.4 84.6(|83.2 71.1 85.4 87.9|80.9
Baseline models

GlossBERT (EMNLP,2019,[12]) || 72.5 ||77.7 75.2 76.1 80.4{/79.8 67.1 79.6 87.4|77.0
BEM (ACL, 2020, [10]) 74.5 (|79.4 774 79.7 81.7||81.4 68.5 83.0 87.9|79.0
Multi-Label (EACL, 2021, [42]) 72.2 ||78.4 77.8 76.7 78.2(/80.1 67.0 80.5 86.2|77.6
Bi-MWSD 75.2(/80.2 78.0 79.8 81.4||82.8 69.5 82.5 87.5|79.4
Training data: SemCor + WNGT

SparseLMMS (EMNLP,2020,[39])|| 73.0 |[79.6 77.3 79.4 81.3| - - - - | 78.8
EWISER (ACL, 2020, [38]) 75.2 (|80.8 79.0 80.7 81.8||81.7 66.3 81.2 85.8|80.1
ESR (EMNLP, 2021, [41]) 77.4|/81.4 78.0 81.5 83.9|/83.1 71.1 83.6 87.5|80.7
Bi-MWSDharge 77.3 |80.8 79.9 83.8 83.7((84.0 71.7 81.5 86.5|81.5

4.4 Experimental Results

The experimental results are shown in Tab. 2, where according to common prac-
tice, all results are presented as a percentage of the Fl-score. The experimental
results are organized according to the standard evaluation experiment and
the evaluation experiment under data augmentation.

— In the standard evaluation experiment, compared with previous work,
Bi-MWSD is in an upper-middle position; compared with baseline models,



Bi-matching Mechanism to Combat Long-tail Senses of WSD 11

Bi-MWSD achieves state-of-the-art in multiple metrics. The experimental
results confirm that the bi-matching mechanism is indeed beneficial to im-
prove the recognition ability of the model. Compared with GlossBERT [12], it
shows that the matching mechanism of Bi-MWSD is superior to the recog-
nition method constructed by a fully connected layer with normalization
constraints. The possible reason is that the recognizer constructed by a fully
connected layer has a large number of parameters that need to be learned,
and the lack of training samples of long-tail senses makes it difficult to learn
the parameters effectively. Compared with BEM [10], it shows that the bi-
matching mechanism of Bi-MWSD will improve the recognition ability com-
pared with the single-matching mechanism model with a similar structure.
For the contribution of the collocation feature matching method, we will give
an analysis in the ablation study.

— In the evaluation experiment under data augmentation, Bi-MWSD
also achieves state-of-the-art performance in multiple metrics, indicating that
Bi-MWSD has great potential. Moreover, it also shows that when the train-
ing sample size of tail senses is expanded, it is beneficial to improve the
performance of Bi-MWSD.

Analysis of poor performance on indicators A (adjectives) and R (adverbs)
of Tab. 2: In linguistics, nouns and verbs are words with a serious long-tail, and
adjectives and adverbs are relatively weaker. In other words, there are fewer
tail senses in adjectives and adverbs. For datasets where the proportion of tail
senses is not high, the method of not distinguishing or ignoring tail senses has
advantages.

Definition Encoder Collocation Feature Encoder
80 it 76.4 75.9
. |
ES S
. -~ 60
v o
o o 40 A 37.2
b bt
— —
[V [V
20 A
original frozen removed original frozen  removed split
Model Version Model Version

Fig. 2. Experimental results of ablation studies on the definition encoder and the
collocation feature encoder. All values are experimental results under the test set ALL
and are presented as a percentage of the F1-score.
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4.5 Ablation Study

Bi-MWSD employs a bi-matching mechanism to replace the traditional single-
matching mechanism of the WSD model, namely definition matching and
collocation feature matching. To clarify the contribution of various matching
mechanisms to the overall representation, and to determine their value for the
target task, we perform ablation experiments.

Ablation Study for Definition Matching: For the analysis of the definition
matching mechanism, we use the method of ablation function (i.e., freeze the
encoder) and ablation module (i.e., directly remove the encoder). The method
of freezing the encoder will prevent the encoder from fine-tuning the parameters
on the training set, that is, preventing the encoder from learning more semantic
information on the training set. We know that tail senses are marked in the
training set. Preventing the encoder from fine-tuning the parameters on the
training set will hinder the encoder’s ability to recognize tail senses. Compared
with the original model, this method will directly reflect the contribution of the
definition encoder to solving tail senses. The method of removing the encoder is
more direct, which directly reflects the contribution of the definition matching
method to the overall representation.

We separately freeze and remove the definition encoder on the original model,
and adjust the hyperparameters to get the best results. The experimental results
are shown in Fig. 2.

1. Comparing the original version and the frozen version, it can be seen that the
definition encoder can indeed learn new semantic knowledge by fine-tuning
the parameters on the training set, and it can greatly improve the overall
representation.

2. Comparing the original version and the removed version, it can be seen that
the contribution of the definition encoder to the overall representation is
huge. This result is in line with reality, because head senses are indeed far
greater than the usage rate of tail senses in life, and the function of the defini-
tion encoder is reflected in the recognition of head senses. Again, comparing
the frozen version with the deleted version confirms this conclusion.

Ablation Study for Collocation Feature Matching: For the analysis of the
collocation feature matching mechanism, in addition to the ablation function
and ablation module, we also need to disassemble the two functions of
the collocation feature encoder, that is, target word vectorization and example
sentence vectorization. It should be emphasized that the removed version here
only removes the example sentence learning function of the encoder.

We fine-tune the hyperparameters of the modified versions to obtain the best
results. The experimental results are shown in Fig. 2.

1. Comparing the original version and the frozen version, it can be seen that the
model shows the worst case without fine-tuning the parameters under the
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training set. The main reason is that the encoder is responsible for the learn-
ing of the target word vector. If there is no good target word representation,
it will directly affect the overall representation.

2. Comparing the original version with the removed version, that is, removing
the collocation feature matching method, it can be seen that introducing
this matching mechanism can indeed improve the effectiveness of the model.
Although there is only two percentage point improvement, considering the
difficulty of tail sense recognition, it also shows that the bi-matching mech-
anism does contribute to the recognition of tail senses.

3. Regarding whether the training process of merging the target word and the
collocation feature can improve the overall representation of the model, we
can compare the results of the original version and the split version. An
improvement of close to 3% proves that this design is reasonable. Example
sentences of tail senses in the dictionary improve the ability of the pre-trained
model to represent low-tail words.

5 Experiments under Head and Tail Senses

To confirm the effectiveness of the bi-matching mechanism for various word
senses, namely, head senses and tail senses, we conduct experiments under the
reconstructed head sense and tail sense test sets respectively. The ablation ex-
periments focus more on analyzing the effectiveness of each module, while the
experiments here can more clearly present the specific contribution of the bi-
matching mechanism to various word senses.

Datasets: The training set and development set still employ the settings of
the standard evaluation experiment. The test sets are divided into head sense
(HS) and tail sense (TS) datasets obtained by reconstructing ALL.

— The construction method of the head sense datasets is to obtain the dataset
by removing the specified word sense samples in ALL. We construct two
head sense datasets: a dataset constructed by removing data with only one
sample (called Removed 1-shot TS); and a dataset constructed by removing
data with less than three samples (called Removed 2-shot TS).

— The construction method of the tail sense datasets is to obtain the dataset by
retaining only the specified word sense samples in ALL. We construct two
tail sense datasets: a dataset constructed by retaining only data with only
one sample (called Retained 1-shot TS); a dataset constructed by retaining
only data with less than three samples (called Retained 2-shot TS).

Experimental Setting and Baseline Models: The experimental setting
is still carried out according to the setting method of the standard evaluation
experiment. The baseline models select the most comparable GlossBERT [12]
and BEM [10] as the control group. Bi-MWSD adopts the setup of the standard
evaluation experiment.
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Fig. 3. Experimental results on the head sense and the tail sense datasets reconstructed
by ALL. All values are presented as a percentage of the Fl-score. Removed x-shot TS
and Retained x-shot TS refer to different kinds of head sense (HS) and tail sense (TS)
datasets, respectively.

5.1 Bi-MWSD for Head Senses

The experimental results under the head sense datasets are shown in Fig. 3. From
the overall data performance, Bi-MWSD outperforms GlossBERT but is inferior
to BEM on both head sense datasets, indicating that the bi-matching mecha-
nism is stronger than the single-matching mechanism constructed by the fully
connected layer but weaker than the single-matching mechanism constructed by
the definition identification method on datasets with all head senses. This con-
clusion shows that there is a certain interference between the double matching
mechanisms, and it is difficult to obtain the best performance when only one
class of word senses is processed.

5.2 Bi-MWSD for Tail Senses

The experimental results under the tail sense datasets are shown in Fig. 3. From
the overall data performance, Bi-MWSD outperforms the control models on
both tail sense datasets, indicating that the bi-matching mechanism has signif-
icant advantages in dealing with tail senses. This conclusion fully proves that
the collocation feature matching method can effectively deal with the long-tail
senses; the multi-matching mechanism (not limited to the bi-matching mecha-
nism proposed in this paper) can be used to achieve the purpose of dealing with
various word senses in a targeted manner.

6 Conclusion

Inspired by the diverse memory and recognition abilities of children’s linguis-
tic behavior, this paper proposes a method of bi-matching mechanism to deal
with the head and tail senses in Word Sense Disambiguation (WSD). We design
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a collocation feature matching method for tail senses, and leverage traditional
definition matching method to deal with head senses, which together constitute
a WSD model with the bi-matching mechanism (called Bi-MWSD). Bi-MWSD
can effectively combat the difficulty of insufficient tail sense training samples
caused by the long tail distribution of word sense. In addition, Bi-MWSD out-
performs baseline models and achieves state-of-the-art performance under data-
augmented evaluation framework. The contribution of this work is to fill the
gap of bi-matching mechanism in WSD, and moreover explore the feasibility of
bi-matching mechanism against insufficient training samples.

In future work, we will build a hierarchical multi-matching mechanism to
better address the imbalance of training samples caused by the long-tailed phe-
nomenon of word sense distribution. Moreover, we will further subdivide the
word senses, and employ this multi-matching method to deal with various word
senses in a targeted manner to improve the accuracy of word sense recognition.
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