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Abstract—In machine learning, classification algorithms often
use statistical methods to build the correspondence between
features (or attributes) and categories (or labels), that is, the
statistical correlation between features and categories. In quan-
tum theory, a large number of experimental results show that
quantum correlation is far stronger than what can be explained
by local hidden theory (i.e., classical or non-quantum theory),
that is, quantum mechanics theory reveals a statistical correlation
stronger than that described by classical theory. Based on this,
this paper will use the strong statistical correlation revealed by
Bell state to build a classification algorithm to verify the validity
and superiority of the formal framework of quantum mechanics
in specific classification tasks. Specifically, we use quantum joint
probabilities derived from the measurement process of Bell state
to model the quantum statistical correlation between features
and categories. The paper first theoretically proves that the
formal framework used has the ability to violate Bell inequality;
moreover, a classification algorithm is implemented and verified
on classic machine learning datasets. Experimental results show
that the algorithm is significantly better than most mainstream
machine learning algorithms.

Index Terms—Quantum Machine Learning, Quantum Algo-
rithm, Bell State, Quantum Correlation.

I. INTRODUCTION

In machine learning, classification algorithms are an im-

portant research area, not only because of the importance

of classification algorithms in engineering and applications,

but also because classification algorithms are an effective test

field for testing new frameworks or models. Classification

algorithms often use (classical) statistical methods to build

the correspondence between the features (attributes) and cate-

gories (labels) of instances (samples), that is, to establish the

statistical correlation between features and categories [1]–[3].

In quantum theory, physicists have done a lot of experiments

to verify the correctness of quantum theory [4]–[6]. The exper-

imental results show that the local entity theory [7] advocated

by Albert Einstein does not match the experimental results,

but the predictions of quantum mechanics are consistent. It is

pointed out that Quantum Correlation (QC) is far stronger than

what can be explained by local hidden theory (i.e., classical

or non-quantum theory), that is, quantum mechanics theory

reveals a statistical correlation stronger than that described by

classical theory [8]. This strong statistical correlation revealed

by quantum mechanics theory is called entanglement [9].

Entanglement, or called Quantum Entanglement (QE), is

an important quantum resource for quantum computing and

quantum information processing, and thus has become a very

hot research topic in quantum informatics [10]–[12]. QE is a

correlation that is strikingly different from the correlation in

classical information theory. Moreover, entanglement has been

successfully applied to many fields as an important physical

resource, such as quantum teleportation [13]–[15], quantum

cryptography [16]–[18], quantum algorithms [19], etc.

Although quantum mechanics is generally regarded as a

microphysical theory, its connotation is about information

rather than physics. Since Hardy [20], the informational nature

of quantum mechanics has gradually become more and more

rigorous. Therefore, the laws of quantum mechanics should

not only be regarded as the laws of the microphysical world,

but should be regarded as the general rules of information

processing [21]–[23]. Based on this, in this paper, we will

use the formal framework of quantum mechanics to build

a classification algorithm to learn the statistical correlation

between the features and categories of instances. What needs

to be emphasized here is that the statistical correlation is a

strong statistical correlation (i.e., quantum correlation), but

it does not mean that there is a quantum phenomenon (or

quantum effect) between features and categories but rather a

closer relationship between features and categories. This rela-

tionship cannot or cannot be fully (or effectively) established

by classical methods or theories, but it cannot be equated with

a related relationship in the microphysical world.

In quantum mechanics, QC occurs during the measurement

process of entangled states (systems), so the core of the clas-

sification algorithm is to reproduce the measurement process

of entangled states. Since the Bell state [24] is the entangled
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state with the largest entanglement degree under two qubits,

we use the Bell state as the measured entangled state in order

to be able to establish a stronger connection between the sub-

systems. Quantum mechanics incorporates complex numbers

into its formal system, and complex numbers inevitably lead

to the generation of phases. Phase is an important factor in

describing QC, so we choose a phase matrix (operator) to

describe the observations of the subsystem.

In this paper, we use a fully connected network layer to

learn the parameters of observations of the subsystem, and use

weighted sums to integrate the measured probability values of

each entangled state. In short, it can be understood that the

hidden layer nodes of the Multi-Layer Perceptron (MLP) are

replaced with a measurement process. We validate the clas-

sification algorithm on classic machine learning datasets, and

the experimental results show that the classification algorithm

is superior to most mainstream classification algorithms.

The contribution of this paper is to implement a classi-

fication algorithm using the formal framework of quantum

mechanics, theoretically prove that the formal framework used

has the ability to violate Bell inequality, that is, it can describe

strong statistical correlation (i.e., quantum correlation), and ex-

perimentally verify that the formal framework is effectiveness

and superiority in specific classification tasks.

The paper is organized as follows: the related work on QC

and QE is given in Sec. II; we analyze the formal framework

used and verify it by Bell inequality in Sec. III; we use the

formal framework to implement a classification algorithm to

verify the effectiveness of the formal framework in specific

tasks in Sec. IV; we experimentally verify the classification

algorithm in Sec. V; the last section gives a summary and

outlook.

II. RELATED WORK

There have been many excellent achievements in the work

of quantum machine learning, but the work of combining QC

(or QE) and machine learning is not much known by the

author. In this part, we mainly introduce the work related to

QC and machine learning.

QC is an important physical resource, like time, energy,

momentum, etc., and it can extract and transform. QC is grad-

ually being applied to quantum informatics to exert its unique

advantages. Among them, the entanglement characteristics of

quantum many-body are studied and applied most deeply

and extensively. Carleo et al. [25] proposed a variational

representation of quantum states based on artificial neural

networks with a variable number of hidden neurons, which ef-

fectively captures the complexity of one- and two-dimensional

entangled many-body systems. Although the restricted boltz-

mann machine used is simple, this approach achieves high

accuracy in describing prototypical interacting spins models in

one- and two-dimensions. Deng et al. [26] explored the data

structures that encode the physical features in the network

states by studying the entanglement properties with a focus

on the restricted boltzmann machine architecture. They prove

that the entanglement entropy of all short-range restricted

boltzmann machine states satisfies an area law for arbitrary

dimensions and bipartition geometry. Van Nieuwenburg et

al. [27] proposed a neural-network approach to finding phase

transitions based on the performance of a neural network after

it is trained with data that are deliberately labeled incorrectly.

See also Refs. [28]–[30]

In the theoretical study of QC and QE: Vedral et al. [31]

presented conditions every measure of entanglement has to

satisfy, and constructed a whole class of entanglement mea-

sures. Moreover, Vidal et al. [32] presented a measure of

entanglement that can be computed effectively for any mixed

state of an arbitrary bipartite system. They showed that it does

not increase under local manipulations of the system, and used

it to obtain a bound on the teleportation capacity and on the

distillable entanglement of mixed states. Kitaev et al. [33]

formulated a universal characterization of the many-particle

quantum entanglement in the ground state of a topologically

ordered two-dimensional medium with a mass gap. See also

Refs. [34]–[38]

In short, the combination of machine learning and QC (or

QE) is still an emerging field in academia and industry, and

more research resources are needed.

III. THEORETICAL ANALYSIS AND VERIFICATION BY

BELL INEQUALITY

Compared with classical theory, quantum mechanics theory

has its own unique advantages. For example, it can break

through the upper bound that classical theory can reach. Entan-

glement is such a feature described by quantum mechanics [8].

From this we can get a simple understanding that it is more

valuable to use a quantum mechanics framework that violates

the classical theoretical framework to construct a computing

model. The theoretical tool for verifying whether the quantum

mechanical framework can violate the classical theoretical

framework is the Bell inequality [24].

In the following sections we will theoretically analyze the

quantum mechanics framework used in this paper and verify

it using Bell inequality. Since entanglement occurs during the

measurement process of entangled states, we will elaborate

from the definition and measurement of entangled states in

order.

A. Define Entangled States

Definition 1: Suppose a composite system is composed of

two subsystems A and B, and the Hilbert spaces of these two

subsystems are HA and HB , respectively. The Hilbert space

of the composite system HAB is

HAB = HA ⊗HB (1)

where ⊗ represents the tensor product. Let the quantum states

of A and B be |ψ〉A1 and |ψ〉B , respectively. If the quantum

state of a composite system |ψ〉AB cannot be written as a

tensor product

|ψ〉AB 6= |ψ〉A ⊗ |ψ〉B , (2)

1|·〉 is a Dirac symbol often used in quantum mechanics, which represents
a vector, called Ket; 〈·| is a dual vector of |·〉, called Bra.
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then the composite system is called an entanglement system

of A and B, and the two subsystems are entangled with each

other.

In the same way, we can get the definition of entangled

state of multiple subsystems, namely, the composite system

cannot perform tensor decomposition. Below we give some

quantum entangled states that will be used in this paper or

often mentioned in other treatise:

Example 1: The largest entangled state used to describe a

two-qubit system is often referred to as the Bell state. It is

named after the Irish physicist, the famous Bell Inequality

proponent John Stewart Bell [24]. Its specific form is:

|Φ±〉 = 1√
2
(|0〉A ⊗ |0〉B ± |1〉A ⊗ |1〉B) (3)

|Ψ±〉 = 1√
2
(|0〉A ⊗ |1〉B ± |1〉A ⊗ |0〉B). (4)

In order to prove the generality of the quantum mechanical

framework we will use, we define an entangled state with an

arbitrary degree of entanglement in the case of two qubits. Let

the entangled state be

|Ψ〉 = α|00〉+ β|11〉, (5)

where α = eiη sin(ξ) and β = e−iη cos(ξ), and |α|2 + |β|2 =
1. i represents the imaginary number symbol, i.e., i2 = −1.

η ∈ R and ξ ∈ R represent arbitrary real-valued parameters.

The density matrix form of this entangled state is defined as

ρ = |Ψ〉〈Ψ|. (6)

B. Measuring Entangled States

In the field of quantum computing and quantum information,

projection measurement is widely used. Projection measure-

ment is described by a observation, Hermite operator M , on

the state space of the observed system. This observation has

a spectral decomposition,

M =
∑

m

mPm, (7)

where Pm is a projection onto the eigenspace M of the

eigenvalue m. A possible measurement result is the eigenvalue

m corresponding to the measurement operator Pm. When

the state Ψ is measured, the probability that the result m is

obtained is

P(m) = 〈Ψ|Pm|Ψ〉. (8)

After the measurement result m is given, the state of the

quantum system after the measurement, |Ψ′〉, is immediately

modified to

|Ψ′〉 = Pm|Ψ〉
√

P(m)
. (9)

In this paper, the observations of the subsystems of the

entangled system are defined as

Mr = σx cos(φr) + σy sin(φr) (10)

=

[

0 e−iφr

eiφr 0

]

(11)

where r represents the corresponding subsystem, say A and

B, then r ∈ {A,B}. φr ∈ R represents arbitrary real-valued

parameter. σx and σy represent the Pauli matrix. The Pauli

matrix is four commonly used matrices, i.e.,

σx ≡ X ≡
[

0 1
1 0

]

σy ≡ Y ≡
[

0 −i
i 0

]

(12)

σz ≡ Z ≡
[

1 0
0 −1

]

I ≡
[

1 0
0 1

]

. (13)

The main motivation for using Mr here is that it only

describes phase information of the subsystems. Phase is an

inevitable result of the introduction of complex numbers in

quantum mechanics, and this operation has led to many unique

phenomena of quantum mechanics, such as entanglement.

Therefore, this article will only focus on the information

processing capabilities of phase.

By applying the observation of the subsystem to the entan-

gled state, we can obtain the observable probability distribu-

tion of the entangled system,

P(A,B) = Tr[(MA ⊗MB)ρ] (14)

= 〈Ψ|(MA ⊗MB)|Ψ〉 (15)

= sin(ξ) cos(ξ) cos(φA + φB + 2η) (16)

which is the joint probability of the subsystems A and B. Tr

represents a matrix function, which is the trace of a matrix.

C. Verified by Bell Inequality

The Bell inequality is a powerful mathematical inequality

proposed by Bell in 1964 to verify the correctness of quantum

mechanical theory [24]. Many experimental results based on

the Bell inequality are consistent with the predictions of

quantum mechanics theory, indicating that quantum correla-

tions, such as quantum entanglement, are far stronger than the

explanation provided by the local hidden variable theory.

The Bell inequality is also used as an important tool to

verify whether a formalized framework has the ability to de-

scribe non-classical (quantum) correlations. Violating the Bell

inequality can prove that the formalized framework has the

ability to describe quantum correlation. The Wigner inequal-

ity [39] is an important Bell inequality, and its mathematical

form is

Pr(X,Y ) ≤ Pr(X,Z) + Pr(Z, Y ), (17)

where Pr represents a symbol of probability and X , Y and

Z represent observations. To prove convenience, we shift the

inequality, that is,

Pr(X,Y )− Pr(X,Z)− Pr(Z, Y ) ≤ 0. (18)

For the problem of verifying whether the inequality can be

broken, just give a counter example. For Wigner inequality, let

the entangled state |Ψ〉 is the maximum entangled state, |Ψ〉 =
1√
2
(|00〉 + |11〉), i.e., ξ = π

4
, η = 0, and φX = φY = 0 and

φZ = π
2

, then P(X,Y ) = 1, P(X,Z) = 0 and P(Z, Y ) = 0,

i.e.,

P(X,Y )− P(X,Z)− P(Z, Y ) = 1 
 0. (19)
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From the proof that violates the Wigner inequality, we can

confirm that the formal framework has the ability to reproduce

quantum correlation, that is, quantum entanglement. In the

third section, we will build a classification model based on

the formal framework to verify the validity and superiority of

the formal framework on classic machine learning datasets.

D. Analysis

From the verification of the Bell inequality, we can get a

consensus that this formal framework can model the strong

statistical correlation of entangled states. But here we also

need to be clear: whether the quantum effect appeared in the

process of using the formal framework and how to verify it

is still a difficulty in the physical world, we can only give a

rough judgment from the perspective of experimental effects.

It can be seen from Eq. (16) that when using the quantum

joint probability derived from quantum entanglement, we do

not necessarily have to make all parameters adjustable. In

order to reduce the difficulty of learning, we use an entangled

state with a fixed maximum entanglement degree, that is, the

Bell state. That is to say the parameters ξ = π
4

and η = 0.

IV. CLASSIFICATION ALGORITHM WITH QC

In order to verify the effectiveness and superiority of the

formal framework of quantum mechanics in specific tasks, we

use this framework to implement a classification algorithm to

facilitate verification on classic machine learning datasets. This

algorithm is called a classification algorithm inspired by QC

(or QE), and is abbreviated as QCCA.

The structure of this section is as follows: we first describe

the construction method of the entanglement relationship

between each feature and the label, that is, a measurement

process of the two qubit entangled state, then describe how

to integrate the entanglement relationship between all features

and the label, that is, integrated into a complete classification

algorithm; finally, the parameter learning process of the entire

algorithm is given.

A. Measurement Process of Entangled State

In this paper, we use the Bell state to describe the strong

statistical correlation between each feature and the label, that

is, one subsystem of the Bell state describes the feature and

the other describes the label. It can be seen that if there are

N features, N Bell states are needed. Here we choose the

Bell state as the entangled state because: 1. The Bell state

is the entangled state with the maximum entanglement in the

case of the two qubits; 2. From the analysis of the theoretical

part, it can be seen that the use of entangled states with fixed

parameters can reduce the difficulty of learning, but it will

not have much impact on the results. As shown in Eq. (3),

the entangled state between the feature F and the label L is

denoted as:

|Φ〉 = 1√
2
(|0〉F ⊗ |0〉L + |1〉F ⊗ |1〉L) (20)

=
1√
2
(|00〉+ |11〉). (21)

In quantum mechanics, the observations of a system are

described by Hermite operators. As stated in the theory

section, phase is the essential cause of QE, so we use the

phase operator function to represent the observation of the

system. Moreover, since the label can be represented by a

specific state, its parameter is set to a fixed value, i.e., φ = 0.

As shown in Eq. (10), the observation of the k−th feature is

defined as:

Mk
F (φ

k) = σx cos(φ
k) + σy sin(φ

k) (22)

=

[

0 e−iφk

eiφ
k

0

]

, (23)

and the observation of the label is defined as:

ML = σx cos(φ = 0) + σy sin(φ = 0) (24)

=

[

0 1
1 0

]

. (25)

From the definition of projection measurement, the mea-

surement result is the eigenvalue of the observation, and the

measurement operator is the eigenstate of the observation. So

the measurement operators of the k−th feature are

Mk
F (φ

k) = Πk+
F (φk)−Πk−

F (φk) (26)

=
1

2

[

1 e−iφk

eiφ
k

1

]

− 1

2

[

1 −e−iφk

−eiφk

1

]

(27)

and the measurement operators of the label are

ML = Π+

L −Π−
L (28)

=

[

1

2

1

2
1

2

1

2

]

−
[

1

2
− 1

2

− 1

2

1

2

]

(29)

From this we can see that for a 2-dimensional qubit, there

are at most two eigenvalues, that is, it can only be used for

the two-class (binary) classification problem. Of course, we

can also implement the multi-class classification problem by

adding auxiliary qubits, but this is not the main focus of this

paper.

Now we can construct the entangled state measurement

operator by combining the measurement operators of the

subsystems, that is, the measurement operators of the feature

and the measurement operators of the label. The measurement

operator of the positive example (positive class) is defined as:

Πk+(φk) = Πk+
F (φk)⊗Π+

L , (30)

and the measurement operator of the negative example (nega-

tive class) is defined as:

Πk−(φk) = Πk+
F (φk)⊗Π−

L . (31)

Of course, we can also use Πk+(φk) = Πk−
F (φk) ⊗ Π+

L to

represent the measurement operator of the positive example,

and Πk−(φk) = Πk−
F (φk)⊗Π−

L to represent the measurement

operator of the negative example. Their effects are the same.
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Fig. 1. Schematic diagram of QCCA: Each node in the measurement layer
represents a measured process of an entangled state.

So the probability obtained after measuring the entangled state,

i.e., |Φ〉, can be defined as

P (Πk+(φk)) = 〈Φ|Πk+(φk)|Φ〉 (32)

= 〈Φ|(Πk+
F (φk)⊗Π+

L)|Φ〉 (33)

and

P (Πk−(φk)) = 〈Φ|Πk−(φk)|Φ〉 (34)

= 〈Φ|(Πk+
F (φk)⊗Π−

L )|Φ〉. (35)

To this end, we can get the probability of the measurement

result of the entangled state composed of each feature and

the label, that is, the probability value of the positive example

and the probability of the negative example. In the following

section, we will describe how to integrate the probabilities into

the final output probability, and also describe how to represent

and learn the parameters of the measurement operators of the

features.

B. Design QCCA through Measurement Process

In order to allow readers to have a global understanding of

QCCA, we first give a schematic diagram of the structure of

QCCA, as shown in Fig. 1. From the diagram we can clearly

see that we use the fully connected network layer to learn the

parameters of the measurement operator of the feature, that is,

φk = ReLU





N
∑

j=1

wk
j x

k
j + bk



 , (36)

where wk ∈ RN is the weight vector, xk ∈ RN is the features

of the instance, bk ∈ R is the bias term, N is the number

of the features and ReLU (Rectified Linear Unit) [40] is an

activation function. Moreover, we use the weighted sum to

integrate the measured probability values of the entangled state

together as the final output value of QCCA, that is,

P± =

N
∑

k=1

vk±P (Πk±(φk)), (37)

where vk± ∈ RN is the weight vector.

TABLE I
DATASET STATISTICS: ‘INSTANCES’ REFERS TO THE NUMBER OF

SAMPLES CONTAINED IN THE DATASET, AND THE NUMBER OF POSITIVE

AND NEGATIVE SAMPLES IS INDICATED IN PARENTHESES; ‘ATTRIBUTES’
REFERS TO THE NUMBER OF ATTRIBUTES OF THE SAMPLE, WHICH DOES

NOT CONTAIN THE LABEL OF THE SAMPLE; ‘SPECIES’ REFERS TO THE

NUMBER OF SAMPLE CATEGORY, SUCH AS POSITIVE AND NEGATIVE IN

THE TWO-CLASS CLASSIFICATION TASK.

Dataset Instances Attributes Species

Abalone 4177 (2096+2081) 8 2
Wine Quality (Red) 1599 (855 + 744) 11 2
Wine Quality (White) 4898 (3258+1640) 11 2

So far, the model structure of QCCA has been described.

In the following sections, we will describe how to learn the

parameters in the model.

C. Parameter Learning

In machine learning, the loss function is usually used as

the objective function of the model. This paper uses the most

basic and most commonly used cross entropy loss function as

the loss function of QCCA, and its specific form is

H(p, q) = −
N
∑

j=1

p(xj)log(q(xj)). (38)

Moreover, we use the optimizer Adam [41] to update the

parameters of the model. Adam optimizer can be said to be

the most widely used optimizer with fast convergence speed

and stable convergence process.

In the end, we give the pseudo code of the model training

process to facilitate the reader to better understand the model

training process, which is Alg. 1.

Algorithm 1 Training Process of QCCA

Input: Training set T
T = {(xk, yk)|xk ∈ RN , yk ∈ {[0, 1]), [1, 0]}}Nk=1

.

Output: Trained QCCA

1: Initialise wk ∈ RN , bk ∈ R and vk ∈ RN , k ∈ {1 · · ·N}
2: repeat

3: for each (xk, yk) in T do

4: φk = ReLU
(

∑N
j=1

wk
j x

k
j + bk

)

;

5: P k+ =
∑N

k=1
vk+P (Πk+(φk));

6: P k− =
∑N

k=1
vk−P (Πk−(φk));

7: P k = [P k+, P k−];
8: Calculate the cross entropy of P k and yk, i.e.

H(P k, yk);
9: Use the optimizer to minimize H(P k, yk) and update

w, b and v;

10: end for

11: until Epochs

V. EXPERIMENTS

A. Datasets and Evaluation Metrics

Since our experiments are simulated on a classical computer,

and limited by the computing power of the classical computer,
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the program can only be verified on a lightweight dataset.

Moreover, since the observation of qubits only has at most two

eigenvalues, using a qubit to represent a label can only be used

to represent the two-class (or binary) classification problem.

For the multi-class classification problem, it is possible to

increase the number of qubits for the label, but this paper

focuses on verifying the validity and superiority of the formal

framework of quantum mechanics.

The experiments were conducted on three most frequently

used machine learning datasets from UCI [42], that is,

Abalone2, Wine Quality3 (Red) and Wine Quality3 (White).

The statistics of each dataset are given in Tab. I.

Abalone is a dataset that predicts the age of abalone. We

divide the age less than 10 into one class, and the greater than

or equal to 10 into another class.

Wine Quality is a dataset that scores on wine quality. Each

wine has a score of 0 to 10. We divide the scores less than or

equal to 5 into one class, and the scores greater than 5 into

another class. The reason for dividing the dataset in this way

is that the number of samples in two classes can be made as

close as possible.

All experiments use the 5-fold cross-validation method to

divide the training set and the test set. The experimental

evaluation metrics, that is, the F1-Score, the Accuracy and

the AUC (Area Under Curve), are taken as the average of the

5 results.

B. Compare with Classical Classification Algorithms

1) Baselines: We conduct a comprehensive comparison

across a wide range of mainstream machine learning classifi-

cation algorithms, including Naive Bayesian Model (NBM),

Logistic Regressive (LR), Decision Tree (DT), K-Nearest

Neighbor (KNN), Support Vector Machine (SVM), Linear Dis-

criminant Analysis (LDA), Quadratic Discriminant Analysis

(QDA) and Multi-Layer Perceptron (MLP).

2) Parameter Settings: QCCA has four hyper-parameters,

which are learning rate, mini-batch, training epochs and initial

weight. The same parameter settings are used on all datasets,

which are: learning rate is 0.001, mini-batch is 1, training

epochs is 500 and initial weight is 0.01, except for the different

learning rate under Abalone dataset, which is: learning rate

is 0.0001. We compare the experimental results to determine

the hyper-parameters of the model. Moreover, in order to

evaluate the model as objectively as possible, we choose a

fixed initial weight, which is set to 0.01; we also uniformly

use the minimum batch (i.e., mini-batch) setting, which is set

to 1. The hyper-parameters in the baselines are set to: In MLP,

activation is relu , solver is adam and alpha is 0.0001; In LDA,

solver is svd; In SVM, C is 1.0 and kernel is rbf ; In KNN,

n-neighbors is 5; In LR, penalty is L2. Other parameters not

listed use the default value of the framework Scikit-Learn4.

3) Experiment Results: The experiment results are shown

in Tab. II. The best-performed values of each evaluation

2http://archive.ics.uci.edu/ml/datasets/Abalone
3http://archive.ics.uci.edu/ml/datasets/Wine+Quality
4https://scikit-learn.org/stable/index.html

TABLE II
EXPERIMENT RESULTS ON DATASETS ABALONE, WINE QUALITY (RED)
AND WINE QUALITY (WHITE). THE BEST-PERFORMED VALUES OF EACH

EVALUATION METRIC ARE IN BOLD. AT THE SAME TIME, WE ALSO GIVE

THE INCREASE (OR DECREASE) RATIO OF QCCA OVER STANDARD MLP.

Dataset Algorithm F1-Score Accuracy AUC

Abalone

LR 0.7708 0.7711 0.7711
DT 0.7091 0.7139 0.7138

NBM 0.7384 0.7340 0.7340
KNN 0.7699 0.7699 0.7699
SVM 0.7669 0.7536 0.7538
LDA 0.7742 0.7771 0.7770
QDA 0.7427 0.7593 0.7591
MLP 0.7684 0.7530 0.7530

QCCA 0.7903 0.7895 0.7895

Over MLP 2.85% ↑ 4.84% ↑ 4.84% ↑

Wine Quality
(Red)

LR 0.7460 0.7395 0.7395
DT 0.7547 0.7385 0.7373

NBM 0.7396 0.7248 0.7242
KNN 0.6757 0.6566 0.6556
SVM 0.7298 0.7098 0.7080
LDA 0.7504 0.7379 0.7381
QDA 0.7561 0.7266 0.7217
MLP 0.7481 0.7285 0.7266

QCCA 0.7478 0.7448 0.7476

Over MLP 0.04% ↓ 2.23% ↑ 2.89% ↑

Wine Quality
(White)

LR 0.8230 0.7472 0.6799
DT 0.8233 0.7445 0.6900

NBM 0.7795 0.7051 0.6666
KNN 0.7871 0.7031 0.6428
SVM 0.8266 0.7486 0.6737
LDA 0.8225 0.7482 0.6840
QDA 0.8166 0.7445 0.6900
MLP 0.8197 0.7435 0.6767

QCCA 0.8272 0.7617 0.7167

Over MLP 0.91% ↑ 2.44% ↑ 5.91% ↑

metric in each dataset are in bold; moreover, we also give

the improvement ratio compared to the standard MLP. The

experiment results show that QCCA has obvious advantages

over the mainstream machine learning classification algorithms

mentioned in the paper. This result can basically prove the

effectiveness and superiority of QCCA.

It also indirectly illustrates the superiority of the formal

framework of quantum mechanics in classical classification

tasks. We have reason to believe that the strong (non-classical

or quantum) statistical correlation revealed by QE plays an

important role in this process.

In the following we will analyze the superiority of the model

from the specific training process of QCCA.

C. Compare with Standard MLP

QCCA uses a fully connected network layer to learn the

parameters of the measurement operator, and also uses the

mainstream machine learning optimizer Adam to optimize the

parameters in the model. Specifically, we are equivalent to

modifying the output layer of the standard MLP to a quantum

measurement layer (that is, a measured process of entangled

states). Based on this, we have reason to compare with the

standard MLP to verify whether the model replaced by the
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Fig. 2. Experiment results on datasets Abalone, Wine Quality (Red) and Wine
Quality (White). The left column is the accuracy curve under the training set,
and the right column is the accuracy curve under the test set.

measurement layer (i.e. QCCA) has a significant improvement

over the original model (i.e. MLP).

1) Baselines: The model structure of QCCA is the same

as described in Sec. III. The MLP is a two-layer network.

The number of input nodes is N , where N is the number of

attributes of the samples; the number of hidden layer nodes is

also N and uses ReLU as its excitation function; the output

layer has only one node and uses Sigmoid as its excitation

function. Moreover, like QCCA, the mainstream optimizer,

Adam, is used to learn the parameters of the model, and the

basic cross-entropy loss function is used as the optimization

objective function.

2) Parameter Settings: Both QCCA and MLP have four

hyper-parameters, which are learning rate, mini-batch, train-

ing epochs and initial weight. The same settings are used on

all datasets, that is, learning rate is 0.001, mini-batch is 1,

training epochs is 500 and initial weight is 0.01.

Due to the unsatisfactory learning effect, we adjusted the

learning rate of QCCA under Abalone dataset to 0.0001, and

the learning rate of the MLP under Wine Quality (Red) dataset

to 0.0001. Note that since we want to ensure the objectiveness

and fairness of the experiments as much as possible, we have

given a uniform initial weight and set the mini-batch to 1.

3) Experiment Results: Fig. 2 shows the accuracy curves

of QCCA and MLP under different datasets, Abalone, Wine

Quality (Red) and Wine Quality (White). For clarity, we

present the results of the training set and the test set separately,

that is, the left column is the accuracy curve under the training

set, and the right column is the accuracy curve under the test

set. Note that this test set is the verification set divided by

the cross-validation method. In this section, we use it as a

measurement set.

It can be clearly seen from the graphical results that QCCA

is significantly better than standard MLP in accuracy and

can maintain an increase of more than one percentage point.

Since the learning rates of the models under the two datasets,

Abalone and Wine Quality (Red), are different, the conver-

gence speed cannot be compared to each other. However, the

learning rate and other hyper-parameters of the models under

Wine Quality (White) dataset are the same, and it can be seen

that the convergence speed of QCCA is significantly better

than standard MLP.

It should be noted that the classic model has performed well

on these three datasets, and the space that can be improved is

not large. QCCA can guarantee an increase of more than one

percentage point, which can indicate the superiority of QCCA.

It further shows the validity and superiority of the formal

framework of quantum mechanics in classical classification

tasks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we use the formal framework of quantum

mechanics to implement a classification algorithm, and analyze

the formal framework theoretically and verify the algorithm

experimentally. Experimental results show that the formal

framework has certain advantages in classical classification

tasks. It also indirectly shows that the strong statistical correla-

tion (i.e., QE) can more effectively describe the closer relation-

ship between features and categories in classic classification

tasks. Based on Hardy’s theoretical work, this paper treats the

formal framework of quantum mechanics as a general rule of

information processing. We do not assume the existence of

quantum phenomena or quantum effects in classical tasks, nor

do we make analogies between objects in classical phenomena

and objects in non-classical phenomena. From this perspective,

the work of this article is groundbreaking and has a guiding

significance.

Since we are simulating a quantum algorithm on a classic

computer and are limited by the lack of computing power

of the classic computer, the algorithm can only be verified

on the lightweight datasets. Moreover, because the quantum

entanglement is built under the complex field, the current com-

puting framework does not provide an efficient computational

support. The above problems will become the focus of my

research in the future.
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