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Abstract—Neural Networks (NNs) are widely used because
of their superior feature extraction capabilities, among which
Feedforward Neural Network (FNN) is used as the basic model
for theoretical research. Recently, Quantum Neural Networks
(QNNs) based on quantum mechanics have received extensive
attention due to their ability to mine quantum correlations
and parallel computing. Since two classical bits are required to
simulate one qubit (i.e., quantum bit) on a classical computer,
it brings challenges for simulating complex quantum operations
or building large-scale QNNs on a classical computer. Hardy
et al. extended the classical and quantum probability theories
to the Generalized Probability Theory (GPT), so it is possible
to construct high-order quantum systems. This paper regards
the entire feature extraction and integration process of FNN
as the evolution process of the high-order quantum system,
and then leverages quantum coherence to describe the complex
relationship between the features extracted by each layer of the
network model. Intuitively, we reconstruct FNN to change the
general vector processed by each layer into the state vector of
the high-order quantum system. The experimental results on four
mainstream datasets show that FNN reconstructed from the high-
order quantum system is significantly better than the classical
counterpart.

Index Terms—Feedforward Neural Network, Quantum Neural
Networks, Generalized Probability Theory

I. INTRODUCTION

Neural Networks (NNs) are widely studied and applied
because of their efficient feature extraction and integration
capabilities, and the Feedforward Neural Network (FNN) is
used as the basic model for theoretical research.

Neural network models based on quantum mechanics the-
ory [1] are called Quantum Neural Networks (QNNs) [2],
and they have attracted extensive attention from researchers
because of their ability to mine strong correlations between
features [3], [4], such as quantum entanglement or quantum
coherence. In addition, because quantum mechanics allows
the existence of superposition states, the computational model
based on quantum mechanics has the ability to perform parallel
operations, which makes the quantum model significantly

better than the classical model in terms of computational
efficiency [5].

For a long time, QNNs have been widely studied. In 2000,
Ventura and Martinez [6] proposed a quantum implementation
of the associative memory model. In 2003, a qubit (i.e.,
quantum bit) neural network was introduced by Kouda et
al. [7]. Subsequently, a number of quantum neural network
models, such as quantum convolutional neural network [8],
quantum recurrent neural network [9], quantum Hopfield neu-
ral network [10], and quantum graph neural network [11], were
proposed, indicating that the neural network models inspired
by quantum theory are widely accepted and recognized by
researchers.

However, since two classical bits are required to simulate
one qubit on a classical computer, it is difficult to construct
large-scale quantum systems on a classical computer. And
the compound operation of quantum systems on a classical
computer is a tensor operation, that is, 2N classical bits are
needed to construct a compound system of N qubits [5], so
it is not suitable for building large-scale quantum neural net-
work models like classical deep learning models. In addition,
quantum coherence (such as the widely mentioned quantum
entanglement) is an important quantum resource [12], [13],
and large-scale quantum systems will help to reproduce and
study the strong correlations revealed by quantum coherence.
Therefore, how to effectively utilize the limited computing
resources on classical computers to simulate large-scale
quantum systems is an fundamental work to advance the
research of QNNs.

Hardy et al. [14], [15] extended the classical probability
theory (namely, Kolmogorov probability) and quantum prob-
ability theory (namely, mathematical principles of quantum
mechanics) to the Generalized Probability Theory (GPT),
so it is possible to construct high-order quantum systems.
That is to say, based on the GPT, we can construct high-
order general bits, similar to qubits, which conform to all the
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properties of quantum mechanics. In this paper, we regard
the entire feature extraction and integration process of FNN
as the evolution process of the high-order quantum system,
and then leverage quantum coherence to describe the complex
relationship between the features extracted by each layer of the
network model. Intuitively, we reconstruct the FNN through
the GPT to change the general vector processed by each layer
of the network model into the state vector of the high-order
quantum system. The experimental results on four mainstream
datasets show that the FNN reconstructed from the high-order
elementary quantum system is significantly better than the
classical counterpart.

Our contributions can be summarized as follows:
• The feedforward neural network is reconstructed based

on the high-order quantum system proposed by Hardy
et al. [14], [15], which explores a possible method
for simulating large-scale quantum systems on classical
computers.

• A method is proposed to describe the strength of the
correlation between features in the network model by
using quantum coherence, which explores a quantitative
method for the learning ability of each layer of the neural
network.

• Our model performs experimental validation on four
classical datasets, which outperforms its classical coun-
terparts.

II. RELATED WORK

In the early days, Menneer et al. [16] proposed a hy-
pothetical neural network model called a quantum-inspired
neural network in 1995. Then the quantum revolving gate
is introduced into the back-propagation network, and a new
quantum-inspired neural network model is proposed. The
concept of quantum cellular neural network was proposed
by Toth et al. [17] in 1996. They used coupled quantum
dot cells in this architecture to build a simulated cellular
neural network. Matsui et al. [18] proposed a qubit neuron
model which shows quantum learning abilities in 2000. This
qubit neuron model has a high efficiency in solving problems
like data compression. Kouda et al. [7] also proposed qubit
neural network where the interaction between the states of the
neurons with other neurons are based on the laws of quantum
mechanics. The above model is a preliminary exploration of
QNNs. Although the model is not complicated, it is of great
significance to future research work. See also Refs. [19]–[21].

In recent years, Rebentrost et al. [10] coded the Hopfield
network into the amplitude of a quantum state to realize the
storage of large exponential networks in polynomial qubits
in 2018. Cong et al. [8] used variable-parameter qubits to
build larger-scale quantum systems to implement QNN models
and reproduce the functions of classical convolutional neural
network in 2019. Bausch [9] constructed a quantum recurrent
neural network in which the neurons of the network model are
constructed from parameterized qubits in 2020.

Recently, due to the improvement of the computing power
and storage capacity of computers, the research work of QNNs

has made great progress, and it has been possible to construct
larger-scale and complex network models. However, because
these QNN models are based on classical qubits, the scale of
the models and the difficulty of solving problems still cannot
match the classical counterparts. Based on the generalized
probability theory proposed by Hardy et al. [14], [15], we will
use its high-order elementary quantum system to construct a
quantum counterpart that can match the classical neural net-
work model in scale, and solve the difficulties in constructing
a larger-scale quantum network model on a classical computer.

III. GPT: GENERALIZED PROBABILITY THEORY

Following the work of Hardy et al. [14], [15], [22]–[24],
we will first derive GPT based on the instrumentalist frame-
work [25], [26], that is, the entire cycle of the system will be
completed by the preparation, transformation, and measure-
ment devices. The preparation device prepares the system in
a certain state, which has a set of switches for changing the
state of the generated system. After the preparation device,
the system passes through a transformation device, which has
a set of switches for varying the transformation applied to
the system. The number of transformation devices can be
added more than one according to practical needs. Finally,
the system enters the measurement device, which also has
a set of switches to help the experimenter choose different
measurement settings.

Moreover, two natural numbers, d and N , are used to
uniformly describe classical, quantum, and general probability
theories.
• d is defined as the degree of freedom of the system, that

is, the minimum number of real parameters required to
fully describe a system.

• N is defined as the maximum number of distinguishable
states of the system.

Accordingly, we can establish the functional dependence
d(N) between these two natural numbers according to differ-
ent theories.
• In classical probability theory, there is a linear depen-

dence, d = N − 1, which means that a classical bit
(N = 2) only needs 1 real parameter to describe.

• In quantum probability theory, there is a quadratic depen-
dence, d = N2 − 1, which means that a qubit (N = 2)
needs 3 real parameters to completely describe.

• For a more general high-order theory, namely GPT, the
generalized bit (N = 2) will be described as d = Nr−1
where r ∈ N.

The graphical description is shown in Fig. 1.

A. Formal definition of preparation, transformation, and mea-
surement devices

For a physical system, it is not necessary to provide an
exhaustive list of all conceivable measurements, but only a
minimal subset of them. We refer to this subset as the fiducial
set. Therefore, the state of the system will be defined by a list
of probabilities corresponding to the fiducial set, which is

p = [p1, ..., pd] (1)
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Fig. 1. A classical bit with one parameter, a real bit with two real parameters,
a qubit (or quantum bit) with three real parameters, and a generalized bit for
which d real parameters are needed to specify the state. The real bit is the
case of the qubit in the real number field.

where d is the degree of freedom of the system defined
above. From this we can know that the degree of freedom
of the system, namely d, is actually the minimum number of
measurements required to determine a system.

We further subdivide a physical system into pure and mixed
states. If a state is a pure state, it cannot be expressed as a
convex mixed form of other states. If a state is not a pure
state, it must be a mixed state. For example, if a mixed state
is prepared with the probability of λ as p1 and the probability
of 1− λ as p2, the mixed state is defined as

p = λp1 + (1− λ)p2. (2)

Preparation Device: The output of the preparation device
is a list of probabilities of any conceivable measurement of
the system, including two forms of pure and mixed states.

Transformation Device: If the system in state p is input
to the transformation device, its state will be transformed
to a new state O(p). The transformation O(·) is a linear
function, so it is necessary to ensure the linear structure of the
mixed state. For example, consider the mixed state p which
is generated by preparing state p1 with probability λ and p2

with probability 1− λ. Then, in each single run, either p1 or
p2 is transformed and thus one has:

O(p) = O(λp1 + (1− λ)p2)) (3)
= λO(p1) + (1− λ)O(p2). (4)

Measurement Device: Like the transformation device, the
measurement M(·) cannot change the mixing coefficients of
the mixed state p and therefore the measured probability is a
linear function:

M(p) =M(λp1 + (1− λ)p2)) (5)
= λM(p1) + (1− λ)M(p2). (6)

Given a measurement setting, the outcome probabiltiy Pmeas

can be computed by M(·),

Pmeas =M(p). (7)

B. Example: high-order elementary quantum system

An elementary system, namely system of information ca-
pacity of 1 bit, has two distinguishable outcomes which can

be identified by a pair of basis states {pi, p⊥i }, i ∈ {1, 2, ..., d}.
The state is specified by d probabilities for d fiducial measure-
ments,

p = [p1, ..., pd] (8)

where pi is probability for a particular outcome of the i-
th fiducial measurement. The dependent probabilties for the
opposite outcomes, p⊥i = 1 − pi, are omitted in the state
description. We usually replace the probability vector p with
the geometric representation of the Bloch sphere [27],

x = [x1, ..., xd] (9)

where xi = 2pi − 1. The mapping between the two different
representations is an linear map and therefore preserves the
structure of the mixture

λp1 + (1− λ)p2 7→ λx1 + (1− λ)x2. (10)

Therefore, the Bloch vector of the totally mixed state is the
zero-vector x = ~0.

The transformation O(·) does not change the totaly mixed
state, hence O(~0) = ~0. This condition together with the
linearity condition Eq. (3) implies that any transformation can
be represented by a d×d real matrix. The measured probability
is given by the formula:

Pmeas =M(x) =
1

2
(1 + rTx). (11)

r represents the state of the system to be measured under a
given measurement setting. For example, r = [1, 0, 0, ...] is to
measure the first state of the fiducial set.

C. The superiority of GPT

Hardy [14] pointed out that classical probability theory is
a special case of quantum one, and he also derived a more
general probability theory, namely GPT. Quantum probability
theory and GPT are not only generalizations of classical
probability theory, but also reveal to some extent the non-
classical features of nature, that is, the quantum features of the
micro world. To enable readers to better accept the universality
or superiority of GPT, here we review Cabello’s work [22],
[24].

To verify the quantum features revealed by quantum theory,
some inequalities derived from classical theories have been
proposed, such as the Clauser-Horne-Shimony-Holt (CHSH)
inequality [28] to verify quantum nonlocality [29],

|E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)| ≤ 2 (12)

where a, a′ ∈ {+1,−1} are detector settings on side A,
b, b′ ∈ {+1,−1} on side B, and E(·, ·) denote expectation
value, and the Klyachko-Can-Binicioğlu-Shumovsky (KCBS)
inequality [30] to verify quantum contextuality [31],

4∑
i=0

〈xixi+1〉 ≥ −3 (13)

where
〈xixj〉 =

∑
xi,xj=±1

xixjP (xi, xj). (14)
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The correlations in the CHSH and KCBS inequalities are
expressed as a linear combination of probabilities of a subset
of events of the corresponding experiment. The fact that the
sum of probabilities of outcomes of a test is 1 can be used to
express these correlations as a positive linear combination of
probabilities of events ei,

S =
∑
i

wiP (ei) (15)

with wi > 0. Therefore, the CHSH and KCBS inequalities can
be expressed, respectively, as

SCHSH =
3∑

i=0

∑
a,b

P (a, b|i, i+ 1)
LHV
≤ 3 (16)

where a, b ∈ {0, 1} with a = b if i 6= 2 and a 6= b if i = 2, the
sum in i+1 is taken modulo 4 and LHV denote local hidden
variable theory (namely classical theory), and

SKCBS =
4∑

i=0

P (0, 1|i, i+ 1)
NCHV
≤ 2 (17)

where the sum in i + 1 is taken modulo 5 and NCHV
denote noncontextual hidden variable theory (namely classical
theory). Although in these inequalities all probabilities have
weight 1, each probability P (ei) may have a different weight
wi. The inequalities can be described as a vertex-weighted
graph (G,w), that is, a graph G with a vertex set V and a
weight assignment w : V → R+.

From classical theory (e.g., LHV and NCHV), Quantum
Theory (QT), and GPT, we can get different degrees of
violations for the inequalities, that is, the following inequality
relationship

S
LHV,NCHV

≤ α(G,w)
QT

≤ ϑ(G,w)
GPT
≤ β(G,w) (18)

where α(G,w) is the independence number of (G,w) [32],
ϑ(G,w) is the Lovász number of (G,w) [32]–[34], and
β(G,w) is the fractional packing number of (G,w) [32]. The
detailed proof of this conclusion can be found in Refs. [22],
[24].

Based on the above conclusions, we can get the under-
standing that GPT has the same ability to reveal non-classical
features of things like quantum theory, and it perfectly gener-
alizes classical and quantum probability theories. Therefore,
it has the ability to describe the classic and non-classical
characteristics of things, and can be used as a research tool
with universal characteristics.

IV. THE NETWORK MODEL UNDER GPT

Broadly speaking, each layer of the FNN completes the
vector-to-vector mapping and the FNN as a whole describes
the entire transformation process of the vector in a fine-grained
manner. In fact, the elementary system of GPT is a vector
built on or within the Bloch sphere, that is, the pure state
is a vector on the sphere and the mixed state is a vector in
the sphere, which has natural advantages in vector operations.
This not only brings the possibility of reconstructing the

FNN in GPT, but also gives realistic physical meaning to
the transformation process of vectors. In this section, we will
leverage the elementary system of GPT to reconstruct the
FNN, called the network model under GPT.

A. The preparation process

Here we use the geometric representation of the Bloch
sphere to describe the elementary system, which means that
the preparation process of the elementary system will output
a state vector of the Bloch sphere, x = [x1, x2, ..., xd]. We
assume that the preparation device only generates pure state,
i.e., ‖x‖ = 1. In fact, this assumption is not harsh. In physics
experiments, we can create an ideal elementary system by
adding some specific restrictions.

Since the preparation device needs a set of switches to
change the generated state vector, e.g., v = [v1, v2, ..., vd],
we can define the preparation process as

x = Normal(v) =
1

N
[v1, v2, ..., vd] (19)

where N =
√∑d

i=1 v
2
i . A more pure understanding is that

the input of the preparation device is v and the output is x,
and the function of the preparation process is Normal(·), that
is, a normalization operation.

B. The transformation process

The input of the transformation device can be either the
output of the preparation device, that is, the pure state,
‖x‖ = 1, or the output of the previous transformation device,
that is, the pure or mixed states, ‖x‖ ≤ 1. In other words,
the transformation process can contain more than one trans-
formation device. For a given input state x, a strict rotation
transformation SO(·) can be used to represent the operation
of the transformation device,

x′ = SO(x). (20)

A more general formal representation can be described as

x′ = Normal(Wx) (21)

where Normal(·) is the normalization function defined above,
and W is a real number matrix whose dimensions are deter-
mined by the input x and the output x′. Since the output of the
transformation device can be a mixed state, it is represented
as a convex combination of pure states,

x′ =
n∑

i=1

λix
′
i =

n∑
i=1

λiNormal(Wix) (22)

where λi is the mixing coefficient, i.e., λi ≥ 0 and
∑n

i=1 λi =
1.

C. The measurement process

The input of the measuring device is a pure or mixed state
vector x, and the output is a probability vector P about the
fiducial set. According to GPT, there is a linear correspondence
between the geometric representation of the Bloch sphere of
the state vector and the probability representation about the
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fiducial set, that is, Eq. (11). Therefore, we can define the
function of the measurement device as

Pmeas =
1

2
(1+ r� x), (23)

where 1 is a vector of all ones, � is bitwise multiplication,
and r can be considered as a parameter that needs to be input
for the switch of the measurement device. Since in specific
applications, we only need to observe a limited number of
states of the system to complete the task, so we can set the
measurement vector according to practical needs. For example,
r = [0, ..., 0, 1, 1, 1, 0] refers to measuring the status of the
fourth, third, and second from the bottom of the fiducial set.

What needs to be emphasized here is that because GPT
is based on complementary measurable principle, that is, for
{pi, p⊥i }, i ∈ {1, ..., d}, pi + p⊥i = 1, so

Sum(Pmeas) =
d∑

i=1

pi 6= 1. (24)

D. The loss function and optimization method

For the optimization method, this paper cannot propose a
better or more suitable optimization method for Hilbert space,
so readers can choose the classical optimization method to
optimize the parameters of the network model according to
their needs. In this paper, the cross-entropy loss function is
used as the loss function, and Adam [35], which is widely
adopted, is used as an optimization method.

V. EXPERIMENTS AND ANALYSIS

A. Datasets and evaluation metrics

The experiments were conducted on four commonly used
classification datasets, namely MNIST, Fashion-MNIST [36],
Cifar-10, and Cifar-100 [37]. These data sets are often used for
testing new models or methods. The statistical information of
the datasets is shown in Table I. Here we leverage the accuracy
rate, which is often selected in the deep learning model, as the
evaluation metric.

TABLE I
DATASET STATISTICS: THE NUMBER OF TRAINING SET, VALIDATION SET

AND TEST SET AND THE NUMBER OF CATEGORIES ARE SHOWN IN THE
TABLE. THE RATIO OF THE TRAINING SET TO THE VALIDATION SET IS
8 : 2. THE DATASET FASHION-MNIST IS ABBREVIATED AS F-MNIST.

Dataset Training Validation Test Categories

MNIST 48000 12000 10000 10
F-MNIST 48000 12000 10000 10
Cifar-10 40000 10000 10000 10
Cifar-100 40000 10000 10000 100

B. Reconstructed FNN vs. traditional FNN

Before conducting experimental verification, we first for-
mally analyze the similarities and differences between the
Network Model reconstructed from GPT (called NM-GPT)
and the FNN.

1) The preparation process vs. the input layer: The input
layer of the FNN receives the data x, and does not do any
processing, x′ = x, while the preparation process of the NM-
GPT adds a normalization constraint Eq. 19,

x′ = Normal(x). (25)

2) The transformation process vs. the hidden layer: The
FNN adds an activation function σ(·) to each neuron in the
hidden layer, which is a mapping function that is indepen-
dently adjusted from other neurons,

x′ = σ(Wx+ b); (26)

while the NM-GPT adds a normalized constraint to the entire
layer, that is, the neurons in the hidden layer are not indepen-
dent of each other, and there is no bias term b,

x′ = Normal(Wx). (27)

Moreover, for complex situations, each hidden layer of the
NM-GPT is equivalent to a linear combination of multiple
hidden layers,

x′ =
n∑

i=1

λiNormal(Wix
′), (28)

that is, a linear combination of multiple pure states into a
mixed state.

3) The measurement process vs. the output layer: The
output layer of the FNN is similar to the hidden layer, but
the added activation function is mostly Softmax(·),

x′ = Softmax(Wx+ b); (29)

while the NM-GPT is a simple linear mapping,

x′ =
1

2
(1+ r� x). (30)

4) Experimental verification: From the mathematical anal-
ysis, it can be seen that the NM-GPT and the FNN are very
similar. In order to effectively verify the performance of the
NM-GPT, we first construct a control group model and then
add modified parts to the control group model to obtain the
experimental group model.

Control Group Model: On the datasets MNIST and
Fashion-MNIST, we use a five-layer FNN as the control group
model. The number of neurons in the input layer is determined
by the number of features in the dataset; the second and third
layers have 512 neurons; the fourth layer has 128 neurons; the
number of neurons in the output layer is determined by the
number of categories in the dataset. The activation function
is ReLU (Rectified Linear Unit) uniformly, the optimizer
is Adam [38], and the loss function is cross-entropy loss
function [39]. This model is called the basic model, and
subsequent changes will focus on this structure.

On the datasets Cifar-10 and Cifar-100, we add a three-
layer convolutional layer to the basic model to cope with the
complex structure of the datasets. The number of convolution
kernels of the three convolutional layers are 32, 64, and 64
respectively. The size of the convolution kernels is 3× 3. The
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Fig. 2. Experimental results under MNIST, Fashion-MNIST, Cifar-10, and Cifar-100. The number in parentheses indicates the number of pure states that
constitute the mixed state, which is n in Eq. 28.

pooling layers are added between the convolutional layers, and
the size of the pooling kernels is 2×2. The activation function
used by the convolutional layer is ReLU .

Experimental Group Model: The experimental group
model is obtained by modifying the basic model of the control
group model. Here we propose two modifications, one is to
reconstruct the FNN with a pure state quantum system, and
the other is to reconstruct the FNN with a mixed state quantum
system. In the pure state, the number of parameters in NM-
GPT will be exactly the same as the number of traditional
FNN. In the illustrations of the figures and tables, we use NM-
GPT(1) to indicate the pure state and NM-GPT(x) to indicate
the mixed state, where x indicates the mixed state composed
of x pure states, that is, n in Eq. 28. In the experiment, the
values of x are 1, 2, 4, and 8. The statistics of the number of
parameters of each model are shown in Table II.

TABLE II
THE STATISTICAL INFORMATION OF THE TOTAL PARAMETERS OF

DIFFERENT MODELS UNDER MNIST, FASHION-MNIST (F-MNIST),
CIFAR-10, AND CIFAR-100 DATASETS. NM-GPT IS ABBREVIATED AS

NGPT. THE NUMBER IN PARENTHESES INDICATES THE NUMBER OF PURE
STATES THAT CONSTITUTE THE MIXED STATE, WHICH IS n IN EQ. 28.

Model MNIST F-MNIST Cifar-10 Cifar-100

FNN 798,474 731,530 910,730 529,124
NGPT (1) 798,474 731,530 910,730 529,124
NGPT (2) 1,594,384 1,461,776 1,763,856 989,034
NGPT (5) 3,982,105 3,652,505 4,323,225 2,368,755
NGPT (8) 6,369,826 5,843,234 6,882,594 3,748,476

Hyper-parameter settings: The models of the experimental
group and the control group adopt the same hyper-parameter
settings, the learning rate is 0.0001, the batch is 32, and the
epoch is 200. Other hyper-parameters have been given during
the model building process. The parameters not mentioned use
the default values of the framework.

Experimental results: The experimental results under
MNIST, Fashion-MNIST, Cifar-10, and Cifar-100 datasets are
shown in Fig. 2. As shown in the figure, the performance

of the NM-GPT is significantly better than the FNN and the
NM-GPT in the pure state, namely NM-GPT(1), is better
than others. The explanation we give is that NM-GPT in the
mixed state has more parameters and is more difficult to learn.
From mathematical analysis and experimental verification,
it can be known that the traditional FNN is not the best
performing network structure, but has a simple design, fewer
parameters, and easy parameter learning process; the NM-GPT
has a complex design, more parameters, and difficult parameter
learning process, but it has better physical interpretability and
stronger learning ability.

C. Ablation experiments
For readers, there will be the question about whether the

superior performance of the NM-GPT will be fully benefited
from the normalization constraint normal(·) rather than the
overall design. We use ablation experiments to answer this
question.

Under Cifar-10 and Cifar-100 datasets, we use different acti-
vation functions on the traditional FNN to get the experimental
results, and only use normal(·) as the activation function on
the traditional FNN to get the experimental results. The results
are shown in Fig. 3. It can be seen from the diagram that
the best performance is not the result of normal(·) as the
activation function, which means that just using normal(·) is
not the reason for the superior performance of the NM-GPT.

VI. NECESSITY OF GPT FOR NNS

Regarding the necessity of introducing the physical model
or physical meaning of NNs (mainly referring to feedforward
NNs), here is our analysis. NNs are a mathematical model
constructed by imitating the human brain nervous system, that
is, the form of linear mapping plus activation function, which
can well simulate the operating mechanism of the nervous
system. Since this model is a mathematical model driven by
data, it is often called a “black box” model, which lacks clear
physical principles.

Based on GPT, this paper deconstructs the overall operation
process of NNs into the transformation process of the state
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Fig. 3. The experimental results of the traditional FNN model under Cifar-10
and Cifar-100 datasets using different activation functions.

vector in Bloch representation, so that the output vector of
each layer in NNs has a clear physical meaning, that is, the
state vector in Bloch representation. An obvious benefit of this
correspondence is to explain the role of the hidden layer of
NNs, that is, to find an intuitive explanation. Moreover, it also
found a way to study the contribution and function of each
layer of NNs in detail.

In addition, based on the different situations of the state
vector, the pure or the mixed states, the relationship between
the state vector and the environment can be well described.
The expression method of system and environment can cor-
respond to the quantum system and environment in quantum
theory. The reason why the quantum system exhibits some
abnormal phenomena (contrary to classical theory) is that
quantum system will establish a connection with environment,
such as entanglement. In this article, we provide the possibility
to describe the pure and the mixed states, which is to provide a
novel idea for explaining NNs. For example, the generalization
ability of NNs can be analyzed by the purity of the state
vector. The greater the purity of the state vector, the weaker
the connection between the system and the environment, that
is, the knowledge contained in the system is sufficient, and the
information contained in the environment is less, which has
little effect on decision-making.

Here we try to use the explanation system of GPT to answer
some NN-related questions (Q) that the classical explanation
system cannot or cannot easily answer.

Q1: It is mentioned in the article that NM-GPT is a network
model with stronger constraints than NNs. If Normal(·)
proposed by NM-GPT is used as the activation function of
NNs to increase the strength constraint, will there be the same
effect as NM-GPT?

Here we illustrate the problem through a set of experiments.
We use the NN model under Cifar 10 and Cifar100 as
the experimental model, and replace its activation function
with Normal(·) and some other commonly used activation
functions to test whether simply adding a strong constraint
can improve the effect of the network model. The experimental
results are shown in Fig. 3. From the experimental results, the
effect of the model under Normal(·) is not the best. It shows

that NM-GPT is a complete system, not simply explained by
a strong constraint Normal(·).

Q2: Can the generalization problem of NNs be better
explained under GPT?

In NNs, regularization can improve the generalization ability
of the model. The explanation is that adding regularization will
make the weight matrix sparse or scattered, and the weight
matrix directly acts on the input vector, making the network
more inclined to use all input features. The model under
GPT normalizes the input vector to a pure state or linear
combination of multiple pure states into a mixed state. The
realistic result is to smooth the input vector so that all features
can have a certain contribution. It can be seen that the two are
the same in this respect. Explained from a broader perspective,
when the state vector is a pure state, the contribution of each
feature of the feature vector is very different compared to the
mixed state, which indicates that all features have not been
fully learned; when the state vector is in the mixed state,
the contribution of each feature is not much different, which
indicates that each feature is fully utilized.

VII. CONCLUSIONS

This paper reconstructs the Feedforward Neural Network
(FNN) based on the high-order quantum system revealed
by the generalized probability theory proposed by Hardy et
al. [14], [15]. Specifically, we construct each layer of the FNN
as an elementary quantum system, which can be a pure state
system or a mixed state system, and then leverage quantum
coherence to describe the complex relationship between the
features extracted by each neuron in each layer. The signifi-
cance is that we propose a new method for constructing large-
scale, high-order quantum systems on classical computers and
explores a quantitative method for the learning ability of each
layer of the neural network.

Our current work only leverages the high-order elementary
quantum system, which means that we can only leverage
quantum coherence between the superposition states of a
single system, and does not involve the more important or
valuable quantum entanglement. Because this theory is in
the initial stage of research, there are still certain difficulties
in constructing composite systems, which is also a research
direction that we will need to explore later.
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