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Abstract—Neural Networks (NNs) have received extensive
attention and research due to their ability to extract and combine
different features non-manually and to mine the internal rela-
tionships between features. In quantum mechanics, the entangled
state simultaneously describes the classical and non-classical
correlation between subsystems, so it can reveal important quan-
tum phenomena such as non-locality, entanglement, etc., but its
essence is the characterization of strong statistical relationships.
Considering the superiority of the entangled state, this article
attempts to use the entangled state to reconstruct the neurons
of NNs to achieve that the network model can characterize
the strong statistical relationship between the features, namely,
the classical and non-classical correlation. Specifically, based
on concurrence, a quantification method of entanglement, we
propose a regularizer that can constrain a state vector to an
entangled state, and apply it to the optimization process to ensure
that the vector passed to the neuron is a legal entangled state.
Finally, the entangled state is measured to obtain the output of
the neuron. Experimental results show that our model is better
than the baseline. Moreover, it performs well compared to the
model inspired by quantum entanglement.

Index Terms—Neural Networks, Entangled Quantum States,
Quantum Entanglement, Strong Statistical Relationships

I. INTRODUCTION

Neural Networks (NNs) are computational models con-
structed by simulating the human brain nervous system [1],
[2], which has received extensive attention and research due
to its ability to extract and combine different features non-
manually and to mine the internal relationships between
features [3]. The deep learning technology with NNs as the
core component has achieved good results in various artificial
intelligence fields, but it is still not on par with brain-like
intelligence [4], [5]. For example, humans can build internal
connections between features and make decisions based on
a small number of samples; moreover, humans are good at
mining abstract connections between features and performing
associative analysis.

To improve the learning ability of deep learning models
to face more difficult feature extraction tasks, research work

based on classic paradigms imitates the human brain nervous
system to build larger and more complex model structures.
However, large and complex models require more computing
power and more corpus, and resource constraints will eventu-
ally limit their development [6]. The non-classical paradigm,
such as quantum mechanics theory, has attracted the attention
of researchers due to its unique advantages. Rebentrost et
al. [7] coded the network into the probability amplitudes of
quantum states to store an exponentially large network in a
polynomial number of qubits. Chen et al. [8] proposed a quan-
tum probabilistic network model, which leverages quantum
parallelism to track all possible network states to improve
performance. In addition, Verdon et al. [9] proposed a quantum
graph neural network and Cong et al. [10] proposed a quantum
convolutional neural network.

This article attempts to reconstruct the neural network
model from the core component of NNs, that is, neurons.
The neurons of NNs imitate biological neurons, which receive
input information, integrate the information to achieve the
exchange of information, and transmit it out, but for bio-
logical neurons, the process of integrating nerve impulses is
complicated and not well known [11]. In quantum mechanics,
the entangled state simultaneously describes the classical and
non-classical correlation between subsystems, so it can reveal
important quantum phenomena [12] such as non-locality [13],
entanglement [14], etc., but its essence is the characterization
of strong statistical correlation, and the correlation is stronger
than the classical statistical correlation [15].

Considering the superiority of the entangled state, this arti-
cle attempts to use the entangled state to reconstruct the neu-
rons of NNs to achieve that the network model can characterize
the strong statistical relationship between the features, namely,
the classical and non-classical correlation. Specifically, based
on concurrence, a quantification method of entanglement, we
propose a regularizer that can constrain a state vector to
an entangled state, and apply it to the optimization process
to ensure that the vector passed to the neuron is a legal
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entangled state. Finally, the entangled state is measured to
obtain the output of the neuron. Based on the neurons, we
constructed a network model, called Quantum Neural Network
(QNN). Experimental results show that QNN is better than the
baseline. Moreover, it performs well compared to the model
inspired by quantum entanglement.

The contribution of this paper is to introduce non-classical
correlation into NNs. To achieve this goal, we propose a
regularizer based on concurrence to constrain the state vector
as an entangled state, define the measurement process of the
entangled state as a neuron, and construct a network structure.
Due to space constraints, we only built the most basic network
model, but it has the ability to build more complex models.

II. PRELIMINARIES AND OUR PROPOSED STRATEGIES

For readers without a background in quantum information
processing, it is difficult to accept that quantum mechanics the-
ory, a science that describes the laws of motion of microscopic
particles, is used to solve problems in the field of information
processing. In this section, we will answer the questions that
readers may have, and propose strategies that will be applied
to model construction and quantitative analysis.

A. Why can quantum mechanics be used?

Although quantum mechanics is generally regarded as
microphysical theory, its connotation is about information
rather than physics. The mathematical principles of quantum
mechanics are called quantum probability theory. Since
Hardy [16], the information nature of quantum mechanics
has been increasingly clarified: it can be proved that quan-
tum mechanics can be formally derived from 4-5 general
information processing axioms which are conceptually natural
and technically concise. Moreover, if a specific limitation is
imposed on the set of information processing axioms derived
from quantum mechanics, a special case of quantum me-
chanics, namely classical probability theory, can be derived.
Therefore, the law of quantum mechanics should not only be
regarded as the law of the microphysical world, but should be
regarded as the general law of information processing [17].

Moreover, we should also clearly realize that quantum
mechanics theory (also called quantum probability theory)
is more general than classical probability theory. Quantum
probability theory not only covers the classical probability
theory, but also reveals unique features, such as negative prob-
ability [18] and the strong statistical correlation revealed [15]
by QE that will be used in this article.

B. Why use quantum probability theory?

To answer the question, we consider two simple systems
exhibiting some degree of similarity:
• a classical system consisting of a projectile initially at

rest, which explodes and produces two fragments carrying
opposite momenta; and

• a quantum system similar to the classical system, that is,
the maximum entangled state or Bell state.

We assume that each system has N copies, and measure the
subsystems of each system, a and b, and the composite system,
ab, to obtain their expected values, 〈a〉, 〈b〉 and 〈ab〉.

We first consider the classical system. Suppose that the
initial angular momentum of the projectile is Θ, when the
projectile produces two fragments after the explosion, their
angular momentum is Θ1 and Θ2 respectively, and Θ2 = −Θ1.
Let ᾱ and β̄ be two arbitrarily selected unit vectors, and the
angle between them is θ. When the experiment is repeated
N times, the observable sign(ᾱ · Θ1) is performed on the
first fragment, and the result is ai = ±1, 1 ≤ i ≤ N ; the
observable sign(β̄ ·Θ2) is performed on the second fragment,
and the result is bi = ±1. The expected values of the two
measurements are, respectively:

〈a〉 =
1

N

N∑
i=1

ai and 〈b〉 =
1

N

N∑
i=1

bi. (1)

Their values are typically of the order 1/
√
N , thus, very close

to zero. The expected value of the composite system is

〈ab〉classical =
1

N

N∑
i=1

aibi. (2)

Simple mechanical considerations show that if the momenta,
Θ1 and Θ2, are uniformly distributed, then

〈ab〉classical =
θ − (π − θ)

π
= −1 +

2θ

π
. (3)

The largest correlation occurs when θ = π:

max
θ
〈ab〉classical = −1 +

2θ

π
(4)

= −1 + 2 = +1. (5)

Next, we examine the quantum system. Let ᾱ and β̄ be two
arbitrarily chosen unit vectors, and the angle between them is
θ. The observables for the two particles are ᾱ · σ1 and β̄ · σ2
respectively, where σ1 and σ2 are the Pauli spin matrices for
the two particles. Because the quantum system is Bell state,

σ2|ψ〉 = −σ1|ψ〉 (6)

where |ψ〉 represents a vector under the Dirac symbol. The
same as the measurement result of the classical system, the
result of the quantum system is also ai, bi = ±1. If we repeat
the quantum experiment N times, then quantum mechanics
predicts that the expected value of the measurement results is
equal to zero:

〈a〉 = 0 and 〈b〉 = 0. (7)

The expected value of the composite system is

〈ab〉quantum = 〈ψ†|(ᾱ · σ1)(β̄ · σ2)|ψ〉 (8)
= − cos(θ). (9)

We apply the identitys

(ᾱ · σ)(β̄ · σ) = ᾱ · β̄ + i(ᾱ× β̄) · σ (10)
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to the quantum system in an entangled state, σ2|ψ〉 = −σ1|ψ〉,
and conclude that

〈ab〉quantum state = −ᾱ · β̄ = − cos(θ), (11)

with θ, ᾱ and β̄ arbitrarily chosen by the experimenter. The
largest correlation occurs for θ = π, then

max
θ
〈ab〉quantum state = − cos(π) = +1. (12)

In the interval θ ∈ [0, π], the two correlations are equal with
the values 0 or ±1, when θ takes the values π

2 or 0 and π,
respectively. In the rest of the interval, the classical correlation
is a linear function, while the quantum correlation is a cosine
function that runs below the straight line in the negative value
range for θ ∈ (0, π2 ) and above it in the positive valus range
for θ ∈ (π2 , π), repectively.

At this point, we can introduce an important measure of
correlation, i.e., Correlation Function [19],

CFab = 〈ab〉 − 〈a〉〈b〉, (13)

to quantify the correlation revealed by quantum probability
theory and by classical one, and get the following conclusions:

Corollary 1: For the physical composite systems ab com-
posed of two subsystems with the same momentum but
opposite directions, the classical correlation described by the
classical probability theory, using the Correlation Function
Eq. 13 as a measurement method, is smaller than the quantum
correlation described by the quantum probability theory, i.e.,

|CFquantumab | ≥ |CFclassicalab |. (14)

The diagram of the inequality is shown in Fig. 1. The proof
method is shown in the derivation process.

Since in the density matrix form of |ψ〉, i.e., ρ = |ψ〉〈ψ|,
the elements on the off-diagonal line describe the coherence
between the subsystems, so we can define that ρ has full corre-
lation (i.e., quantum correlation) and diag(ρ) can be defined
as having only classical correlation [20]. The more general
two-qubit composite system has the following conclusions:

Corollary 1′: When ρ is a two-qubit composite system, then
the non-classical correlation (NCC) described by the entangled
state can be defined by the correlation function (CF), i.e.,
Eq. (13), as:

|CF(ρ)| ≥ |CF(diag(ρ))|. (15)

C. How to use quantum correlation?

Quantum correlation is a combination of classical and non-
classical correlation. The correlation between two systems is
often called entanglement or quantum entanglement. Quantum
correlation is stronger than classical one, and it is an important
quantum resource [15], [21].

In quantum mechanics, physical systems are described by
quantum states, and quantum states can be divided into pure
and mixed states. The pure state is expressed as a vector |ψ〉 in
the complex Hilbert spaceH, and its density matrix expression
is ρ = |ψ〉〈ψ| where 〈ψ| = (|ψ〉)† and † stands for conjugate
transpose. The state vector in the pure state is normalized,

Fig. 1. The correlation described by quantum probability theory is stronger
than that described by classical one.

i.e., 〈ψ|ψ〉 = 1; on the contrary, the state vector in the mixed
state is 〈ψ|ψ〉 < 1. The mixed state can only be expressed
in the form of a density matrix, that is, the mixed state is a
probabilistic mixture of pure states,

ρ =
∑

piρi =
∑

pi|ψi〉〈ψi| (16)

where 0 ≤ pi ≤ 1 and
∑
pi = 1. It can be seen that the pure

state is a special case of the mixed state.
Example 1: The state of a qubit is described by a two-

dimensional complex vector |ψ〉, and |0〉 and |1〉 are the
basis vectors of the complex space H, then the qubit can be
expressed as

|ψ〉 = a|0〉+ b|1〉 (17)

where |0〉=
[

1
0

]
, |1〉=

[
0
1

]
, a, b ∈ C and (a)2 + (b)2 = 1.

The pure state of a composite system is a vector on the
tensor space H⊗H⊗···⊗H. Let |h〉, h ∈ {i, j, ..., k}, be the
basis vector of H, then there is

|ψ〉 =
∑
i,j,...,k

aij...k|ij...k〉 (18)

where |ij...k〉 = |i〉 ⊗ |j〉 ⊗···⊗ |k〉,
∑
aij...k · a∗ij...k = 1 and

aij...k ∈ C. The construction method of the mixed state of the
composite system is the same as that of the single system.

Example 2: The state vector |ψ〉 of a two-qubit composite
system is described by a vector on the 2 ⊗ 2 tensor space
H⊗H, which is generally expressed as

|ψ〉 = a11|00〉+ a12|01〉+ a21|10〉+ a22|11〉 (19)

where
∑

(aij)
2 = 1, aij ∈ C and i, j = {1, 2}.

So far, we have given the form of single and composite
systems, and also given the definition of their pure and mixed
states. Because the strong statistical correlation, i.e., quantum
correlation, revealed by quantum entanglement involved in
this article occurs in composite systems, the following will
focus on composite systems. Moreover, the study of quantum
mechanics is still in its infancy, and many problems have
not been thoroughly studied, such as quantum entanglement
involved in this article. At this stage, the academic community
only has a clear understanding of the two-qubit composite
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system, so our model will also be constructed based on the
two-qubit composite system.

The entanglement degree of the separable state is zero, but
for the non-separable state, namely, the entangled state, an
appropriate quantity is needed to measure the degree of en-
tanglement. The entanglement quantification methods include
the entanglement of formation [22], the negative degree [23],
the relative entropy of entanglement [24] and the entangle-
ment cost [25], but because most entanglement quantification
methods have inherent computational difficulties, they are not
suitable for use in calculation models. Since concurrence [14]
is easy to calculate in special cases and can be used as a
criterion to constrain composite systems, this article will focus
on using concurrence.

For general two-body pure state |ψ〉, concurrence is defined
as

C(|ψ〉) =
√

2(1− Tr(ρ21)) (20)

where ρ1 = Tr2(|ψ〉〈ψ|) and Tr represents the trace of the
matrix, and concurrence of its mixed state ρ is defined as

C(ρ) =
∑
i

piC(|ψi〉) (21)

where 0 ≤ pi ≤ 1 and
∑
pi = 1. For the special case of

two-qubit pure states

|ψ〉 = a11|00〉+ a12|01〉+ a21|10〉+ a22|11〉 (22)

where
∑

(aij)
2 = 1, aij ∈ C and i, j = {1, 2}, concurrence

is defined as

C(|ψ〉) = 2|a11a22 − a12a21|. (23)

Therefore, we can give a basic constraint on the probability
amplitudes for the two-qubit entangled state:

Corollary 2: Let |ψ〉 be a two-qubit pure state, e.g.,

|ψ〉 = a11|00〉+ a12|01〉+ a21|10〉+ a22|11〉 (24)

where
∑

(aij)
2 = 1, aij ∈ C and i, j = {1, 2}, and when its

probability amplitudes satisfie the constraint

a11a22 − a12a21 6= 0 (25)

then |ψ〉 is an entangled state.
The proof is given in the supplemental material.

III. NETWORK MODEL WITH QUANTUM CORRELATION

In this section, we will reconstruct the neurons of NN based
on the entangled state (here mainly refer to the neurons in the
hidden layer) to achieve the purpose of integrating quantum
correlation revealed by QE into the NN model. To make
readers have a macro understanding, but also for narrative
simplicity, we will first reconstruct the simplest three-layer NN
model (that is, there is only one input layer, one hidden layer
and one output layer) to present the method of reshaping the
classical NN model. In real application scenarios, the structure
of the model can be modified as needed.

The content of this section is arranged as follows: 1.
describe how to construct a neuron from entangled states;

2. describe how to build the simplest three-layer NN model
from the reconstructed neuron; 3. the parameter optimization
method of the model.

A. Reconstructing neurons from entangled states

The neurons in the hidden layer in the classical NN model
can be formally defined as

y = F(x) = σ(Wx + b) (26)

where x = [x1, x2, ..., xn]
ᵀ ∈ Rn×1 is the input of the neuron,

y ∈ Rn×1 is the output, σ is the activation function, W ∈
Rn×n is weight and b ∈ Rn×1 is bias. W and b are parameters
that need to be learned. We know that the function of the
neuron in the classical NN model, F(·), is to complete a non-
linear transformation based on σ.

Imitating the classic neuron, we can achieve a function
similar to the classic neuron through the measurement process
of the entangled state. First of all, we need to obtain an two-
qubit quantum system. Since this quantum system is a 4-
dimensional vector, it is necessary to map the n-dimensional
input vector x to a 4-dimensional vector v ∈ R4×1 and make it
a legal pure state |Φ〉. Then we define the following operation

v = map(x) = Mx (27)

where M ∈ R4×n, and

|Φ〉 = f(v) =
1

N
v (28)

where N =
√∑4

i=1 v
2
i . In the end, we get a method to

generate pure state, i.e.,

|Φ〉 = f(Mx) (29)

where M is the parameter that need to be learned, and x is
the input vector of the neuron.

At this point, we have obtained the measured quantum state
|Φ〉, but at this time it is not necessarily an entangled state, so
we need to define a regularizer and add the regularizer to the
objective function to constrain the quantum state to become
an entangled state. Inspired by Corollary 2, the regularizer is
defined as

R(|Φ〉) = 1− |〈Φ|Φ̃〉| (30)

where |Φ̃〉 = (σy ⊗ σy)|Φ〉 and 〈Φ| = (|Φ〉)†. Here σy is the

Pauli operator, σy =

[
0 −i
i 0

]
. The derivation process is

given in the supplemental material.
Finally, we only need to use a measurement operator to

measure the entangled state to get the final output value of
the neuron. According to the definition of quantum mea-
surement [26], the measurement operator can be all possible
ground states in space, so the measurement operator can be
defined as

Π = |s〉〈s| (31)

where |s〉 = f(s) = |s1〉 ⊗ |s2〉 = f(s1)⊗ f(s2), s = s1 ⊗ s2
and si, i = {1, 2}, are a 2-dimensional vector that needs to be
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learned. From this we can get the output of the neuron through
measurement, and the final form of the neuron is

y = Tr(Π|Φ〉〈Φ|) = 〈Φ|Π|Φ〉 (32)

= (〈Φ|s〉)2 = (f(sᵀ)f(Mx))2 (33)

Comparing Eq. (26) and Eq. (32), we can find that they also
have two quantities that need to be learned, namely, M and
s, but their main difference is that the neurons described by
the entangled state require more constraints.

B. A simple example

In the previous section, we have been able to construct a
neuron described by an entangled state. Next, we will show
how to use the neuron to build the simplest network model.
The model is similar to the classic three-layer NN model,
which can be divided into input layer, hidden layer and output
layer.

1) Input Layer:: Like the classical NN model, the input
layer receives an input vector x ∈ RN×1,

x = [x1, x2, ..., xN ]
ᵀ (34)

where N is the dimension of the vector and also represents
the number of neurons in the input layer.

2) Hidden Layer:: Compared with the simple mapping of
the classic model, our neurons in the hidden layer are a
measurement process of entangled states, so for the description
of the hidden layer, we need to divide into two steps, namely,
prepare a set of entangled states and measure the set of
entangled states.

For a given input vector x, we apply map(·) and f(·) one
by one to make it a set of pure states, i.e.,

Φ = [|Φ1〉, |Φ2〉, ..., |ΦH〉] (35)
= f(map(x)) (36)
= f(Mx) (37)

where Φ ∈ R4×H×1, M ∈ R4×H×N and H is the number of
neurons in the hidden layer.

Since |Φi〉 obtained here is a pure state and not the required
entangled state, we constrain it to become a legal entangled
state by adding R(·) to Φ. The specific operation method is
given in the parameter optimization section Sec. III-C.

With the entangled state, we can measure it to get the output
z of the hidden layer, i.e.,

z = (Φᵀf(s))2 (38)

where z ∈ R1×H and s ∈ R4×1.
3) Output Layer:: Similar to the classical NN model, the

output layer of our model is also a fully connected layer with
a normalized function Softmax(·). Its form is

y = Softmax(Wzᵀ + b) (39)

where y ∈ RO×1, W ∈ RO×H , b ∈ RO×1 and O is the
number of neurons in the output layer.

C. Parameter optimization

Our model uses the optimizer Adam to optimize the pa-
rameters. The loss function Loss(·, ·) of the model uses the
cross-entropy loss function. Since R(·) Eq. 30 is added to the
pure state in the hidden layer, the final objective function is

min
1

B

B∑
i=1

Loss(yi, ŷi) + λ
H∑
i=1

R(|Φi〉) (40)

where λ is the coefficient of the regularization term and B is
the number of training samples in each batch.

IV. EXPERIMENTS

A. Compared with the classic network model

We chose two commonly used datasets, namely, Fashion-
MNIST [27] and Cifar 10 [28], to verify QNN. The statistics
of the datasets are shown in Tab. I.

TABLE I
DATASET STATISTICS: THE NUMBER OF TRAINING SET, EVALUATION SET
AND TEST SET IN FASHION MNIST (F-MNIST) AND CIFAR 10. AND THE

NUMBER OF CLASSES.

Dataset Training Evaluation Test Classes

Cifar 10 40000 10000 10000 10
F-MNIST 48000 12000 10000 10

The experimental process is set as follows:
• according to the different datasets, build different classic

network models, and perform parameter tuning on the
datasets to obtain the experimental results of the Control
Group (CG);

• replace the neurons in the hidden layer of the classic
model with neurons reconstructed from the entangled
state, and also perform parameter tuning on the corre-
sponding dataset to obtain the experimental results of the
Experimental Group (EG). Since the neuron reconstructed
from the entangled state requires 4 times the number
of parameters compared to the classical neuron, every 4
classical neuron is replaced with a neuron reconstructed
from the entangled state.

CG: The model under Fashion MNIST is a five-layer
structure, which is an input layer of 28 × 28 neurons, two
fully connected hidden layers of 64 neurons, a fully connected
hidden layer of 32 neurons, and a fully connected output layer
of 10 neurons. The activation function of the hidden layer is
Relu, and the output layer does not use the activation function.
The model uses the optimizer Adam, and learning rate,
batch size and epochs are 0.001, 32 and 200, respectively.

The model under Cifar 10 and the model under Fashion
MNIST have the same basic structure, that is, the above five-
layer structure. The difference is that the model under Cifar 10
adds three convolutional layers on top of the basic structure,
which are one 32-kernel and two 64-kernel convolutional
layers. The size of the convolution kernel is 3 × 3, and the
activation function is Relu. Moreover, two 2×2 pooling layers
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Fig. 2. The accuracy curve under the evaluation set and the test results under
the test set on the datasets Cifar 10 and Fashion MNIST.

are added between the convolutional layers. The optimizer and
hyper-parameters are the same as the model under Fashion
MNIST.

EG: We use the neurons reconstructed from the entangled
state to replace the classic neurons in the hidden layer of the
basic structure at a ratio of 1:4 to construct the basic structure
of EG. On the dataset Cifar 10, the convolutional layers of EG
and CG are consistent. The optimizer and hyper-parameters are
the same as those in CG. The coefficient λ of the regularization
term is 0.01.

The experimental results of each model are shown in Fig. 2.
From the experimental results, QNN is indeed better than the
classical model.

TABLE II
DATASET STATISTICS: THE NUMBER OF SAMPLES AND ATTRIBUTES

CONTAINED IN EACH DATASET IS SHOWN IN THE TABLE, AND THE
NUMBER OF POSITIVE AND NEGATIVE SAMPLES IS SHOWN IN

PARENTHESES.

Dataset Samples Attributes

Abalone 4177 (2096+2081) 8
Wine Quality (Red) 1599 (855 +744) 11
Wine Quality (White) 4898 (3258+1640) 11

B. Compared with the model inspired by QE

Zhang et al. [17] creatively introduced the measurement
process of entangled states into machine learning, and con-
structed a classification algorithm inspired by QE, called ECA.
ECA only uses the measurement process of the entangled
state in the output layer, where the entangled state is given
and only the measurement operator is learned. Our model
extends the measurement process of the entangled state to all
neurons in the hidden layer, and both the entangled state and
the measurement operator are learned. In this section, we will
compare with ECA to examine the pros and cons of QNN. The
datasets come from UCI [29], and their statistical information
is shown in Tab. II. In order to adapt to ECA (ECA is only
applicable to two classification tasks), we adjust the datasets
to two categories according to Ref. [17].

The model structure and parameters of ECA use the settings
published in Ref. [17]. To make QNN and ECA as similar as

Fig. 3. The accuracy of the test set of each model under the datasets Wine
Quality (Red), Wine Quality (White) and Abalone.

possible in the model structure, we add a fully connected layer
to QNN, that is, the first layer is the input layer, the second
layer is the fully connected layer, the third layer is the hidden
layer of neurons reconstructed from entangled states, and the
last layer is the output layer. The number of neurons in each
layer is N , 32, 10, and 2, respectively, where N represents
the number of attributes. The activation function of the fully
connected layer is Relu. The model uses the optimizer Adam,
and learning rate, batch size and epochs are 0.01, 10 and
100, respectively. The coefficient λ of the regularization term
is 0.001. Similar to Ref. [17], we also use the 5-fold cross-
validation method to divide the training set and the test set,
and obtain the experimental results.

The experimental results are shown in Fig. 3. Except for
QNN, other data are taken from the results published in
Ref. [17]. From the results, QNN has achieved good per-
formance on Wine Quality (Red) and Wine Quality (White);
QNN is better than the classic model but it is inferior to ECA
on Abalone.

On the above three datasets, we also compared with the
classical NN model under the same structure. Other hyper-
parameters are the same as Exp. IV-A. The experimental
results are shown in Fig. 4.

C. Quantitative analysis

The entangled state ab used in this article describes both
classical and non-classical correlations, i.e., quantum corre-
lation, so we need to clearly understand the contribution of
Non-classical Correlation (NCC) in the calculation process,

NCC = |CFquantumab | − |CFclassicalab |. (41)

In this section, we first analyze the number of entangled states
input to the neuron based on concurrence, that is, to clarify
the effect of the regularizer Eq. 30, and then quantitatively
analyze the proportion of non-classical correlations based on
the quantitative method Eq. 41.

By analyzing the data of Experiment IV-A, as shown in
Fig. 5 (subgraphs on upper left and lower left), we can see
that through the constraints of the regularizer, more than 99%
of the pure states are trained as entangled states, i.e., C > 0,
which means that QNN is using entangled states to build
the relationship between features, that is, the non-classical
correlation is used. Regarding the question of why it is not
100%: because there may be uncorrelated phenomena between
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Fig. 4. The accuracy curve under the training set and the test results under
the test set on the datasets Wine Quality (Red), Wine Qality (White) and
Abalone. The classic network model and the network model reconstructed
from the entangled state are abbreviated as NN and QNN respectively.

Fig. 5. Here we randomly select a neuron for analysis. The result of the
illustration is to take 1000 test data and divide them into 100 groups for
histogram statistics.

features; or because the computer may regard extremely small
numbers as 0.

We conduct a quantitative analysis of non-classical corre-
lation in the entangled state. As can be seen from Fig. 5
(subgraph on upper right), under the dataset Cifar 10, the
contribution of non-classical correlation is concentrated at
a lower level. The possible reason for this result is that
the model adds three convolutional layers. The convolutional
layers smooth the features effectively and the importance of
the features is basically at an equal level, which ultimately
leads to the contribution of non-classical correlation at a
lower level. As can be seen from Fig. 5 (subgraph on lower
right), under the dataset Fashion MNIST , the contribution
of non-classical correlation is significant, and contributions at
various levels exist, indicating that entangled states efficiently
model the relationship between features through non-classical
correlation.

V. CONCLUSION

Humans can establish inherent and abstract connections
between features and make decisions based on a small amount
of data, indicating that humans have strong feature extraction
capabilities. Considering that the entangled quantum state can
reveal the strong statistical correlation between subsystems,
that is, the classical correlation and the non-classical corre-
lation, this paper leverages the measurement process of the
entangled state to reconstruct the neurons of NNs. Specifically,
based on concurrence, a quantification method of entangle-
ment, we propose a regularizer that can constrain a state
vector to an entangled state, and apply it to the optimization
process to ensure that the vector passed to the neuron is a
legal entangled state. Finally, the entangled state is measured
to obtain the output of the neuron. Experimental results
show that our model is better than the baseline. Moreover,
it performs well compared to the model inspired by quantum
entanglement. The contribution of this paper is to inject non-
classical correlations into neural networks.

Due to space constraints, we have not been able to build
more models based on the reconstructed neuron to extensively
verify the effectiveness and universality of the neuron. In
future work, we will continue to research this area.
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