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Abstract. Correlation is an important information resource, which is
often used as a fundamental quantity for modeling tasks in machine
learning. Since correlation between quantum entangled systems often
surpasses that between classical systems, quantum information process-
ing methods show superiority that classical methods do not possess. In
this paper, we study the virtue of entangled systems and propose a novel
classification algorithm called Quantum Entanglement inspired the Clas-
sification Algorithm (QECA). Particularly, we use the joint probability
derived from entangled systems to model correlation between features
and categories, that is, Quantum Correlation (QC), and leverage it to
develop a novel QC-induced Multi-layer Perceptron framework for clas-
sification tasks. Experimental results on four datasets from diverse do-
mains show that QECA is significantly better than the baseline methods,
which demonstrates that QC revealed by entangled systems can improve
the classification performance of traditional algorithms.

Keywords: Quantum correlation - Quantum-inspired algorithms - Clas-
sification algorithm.

1 Introduction

In machine learning, correlation is considered an important information resource
and is often used as a fundamental quantity in the modeling process of learning
tasks. Correlation is any statistical association, although it usually refers to the
degree to which a pair of variables is linearly related [6].

In recent years, quantum information technology have been developed by
leaps and bounds [4,9]. Quantum information processing has the advantages
that classical information processing cannot match, and can complete informa-
tion processing tasks that cannot be achieved by classical methods [18,19, 16],
such as quantum teleportation, quantum communication, etc. Quantum Correla-
tion (QC) in quantum composite systems [1, 17], namely, non-classical statistical
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correlation, has become more and more important, because it is the core quan-
tum resource and it is stronger than classical statistical correlation [14]. In fact,
the reason why quantum information processing has the superiority that clas-
sical information processing does not possess is because there is a correlation
between quantum systems that is beyond classical correlation [12].

Since quantum theory is not widely used in classical machine learning tasks,
here we give answers to several questions that readers may be concerned about.
Although quantum theory is generally regarded as a micro-physical theory, its
connotation is about information rather than physics. Since Hardy [7], the in-
formational nature of quantum mechanics has gradually become more and more
rigorous. Therefore, the laws of quantum mechanics should not only be regarded
as the laws of the micro-physical world, but should be regarded as the general
rules of information processing [3, 8|.

In this paper, we study the virtue of quantum entangled systems in the clas-
sification tasks and propose a novel classification algorithm called Quantum
Entanglement inspired the Classification Algorithm (QECA) to learn
the statistical correlation between the features and categories. Particularly, base
on the Multi-layer Perceptron (MLP), we develop a novel QC-induced classi-
fication framework. The framework uses a fully connected layer to learn the
parameters of observations of the subsystems, and then uses the weighted sums
to integrate the measured probability values of each entangled state. In short,
it can be understood that the hidden layer neurons (nodes) of the MLP are re-
placed with a measurement process of entangled states. This replacement makes
QECA has the ability to learn the QC between features and categories during
training process. We validate the effectiveness of proposed QECA on four ma-
chine learning datasets, and the experimental results show that QECA not only
significantly outperforms the baseline method MLP, but also achieves the best
performance than the other comparing methods in most cases.

The contribution of this paper is to apply QC revealed by quantum entan-
glement into traditional classification tasks of machine learning and leverage it
to develop a novel QC-induced classification algorithm. Moreover, this paper
theoretically analyzes that the framework used has the ability to violate Bell
inequality, which proves that the framework has the ability to reproduce QC.
Finally, this paper experimentally verifies that QC learned by the framework is
effective for classification tasks and combining QC into traditional classification
frameworks can further boost the classification performance.

2 Theoretical Analysis and Verification by Bell Inequality

In quantum theory, when several particles interact, the properties of each particle
will be integrated into the properties of the overall system, and the properties
of each particle can only describe the properties of the overall system. This
phenomenon is called Quantum Entanglement (QE). QE could also be defined
as one multi-body quantum system in which tensor decomposition is not pos-
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sible [13]. First, let us give the basic definition of entanglement for bipartite
systems (namely, 2-qubit).

Definition 1 Let H; and Hs be two Hilbert spaces and |v)) € Hy @ Ho®. Then
[1) is said to be disentangled, or separable or a product state if |1) = |1h1) ®|1)a),
for some |Y1) € H1 and |12) € Ha. Otherwise, 1) is said to be entangled.

We begin with an arbitrary bipartite entangled state in the bases o3|+) =
+|4)7 that
) =al+ =)+ Bl —+) (1)

where o and 3 are the normalization condition with |a|?+|3|> = 1 but «, 8 # 0.
Without losing generality, a and 3 can be parameterized as o = e sin(¢),
B = e~ cos(¢), where i is the imaginary number with i = —1 and 7, £ are two
real parameters but sin(¢), cos(§) # 0. The density matrix of the entangled state,
p = 1) (1|, can be separated to the local and non-local parts [15], p = pic + pnic-
The local part

pre = sin®(€)| + =) (+ — | + cos® ()] — +)(— + |, (2)

describes the classic statistical correlation between subsystems (or properties),
which belongs to the classical statistics. The non-local part

Pric = sin(€) cos(€) (ei27’| + M= | e — )+ — ) (3)

describes the phenomenon of interference between subsystems (or properties),
which belongs to the quantum statistics.

2.1 The Measurement on Density Matrix

The observable of the subsystem r of the bipartite entangled system, say a and
b, is defined as: ‘
cos(6,) e~ sin(6,)

M = e sin(f,) — cos(6,.) )

where 6 and ¢ are two arbitrary real parameters and r € {a,b}. The observable
has a spectral decomposition, M, = > mP", where P is the projector onto
the eigenspace of M, with eigenvalue m. The possible outcomes of the measure-
ment correspond to the eigenvalues, m, of the observable. Upon measuring the
state |p), the probability of getting result m is given by

p(my) = Tr[P(lp)(e)] = (¢ B [¢) (5)

% The widely used Dirac notations are used in this paper, in which a unit vector # and
its transpose 7 are denoted as a ket |v) and a bra (v|, respectively. ® denotes the
tensor product.

" {|4),]=)} denotes an arbitrary orthonormal basis of the 1-qubit Hilbert space C2.
o3 = o, denotes Pauli matrix, and Pauli matrix refers to four common matrices,
which are 2 X 2 matrix, each with its own mark, namely 0, =01 =X, 0, =02 =Y/,
0, =03=2 and op = 1.
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where Tr denotes the trace of the matrix.

Projective measurements have many nice properties. In particular, it is very
easy to calculate average values for projective measurements. By definition, the
average value of the measurement is

E(M) =Y " mp(m) = m(p|Pule) = (¢l M|p). (6)

m

The average value of the observable M is often written (M) = (| M|p).
Therefore, the joint probability derived from QE is obtained as:

P(+a,+v) = Tr((PF @ P1)pl. (7)

It can be also divided into the local (classical probability) and non-local (quan-
tum probability) parts

patt(+a,+v) = Tr[(Pf © PbJr)(plc + Pnic)] (8)
= Tr[(Py @ BN )pie] + Tr[(Py @ B )puic] (9)
= plc("’av +b) + pnlc(+a; +b) (10)

Accordingly, the probability of other combinations, i.e., pi.(£a, £5), Pic(Fa, L),
Dnic(Ea, Tb) and ppic(Fa, 1), can also be obtained. Moreover, the average values
of a and b in the classical and quantum cases are

(abyi. = — cos(6,) cos(6y) (11)
and
(ab)nic = sin(f,) sin(6y) sin(2€) cos(dq — dp + 27), (12)

respectively.

2.2 Verification by Bell Inequality

The theoretical tool for verifying QE is the Bell inequality [2]. Violating (or
Destroying) Bell inequality is a sufficient condition for the existence of QE. The
Bell inequality has many well-known promotion forms, the first and simple of
which is the Clauser-Horne-Shimony-Holt (CHSH) inequality [11]. The form of
the CHSH inequality is simpler and more symmetrical than many other Bell
inequalities that are later proposed. The specific form of the CHSH inequality is

|[E(Q,S)+ E(R,S)+ E(R,T)—-E(Q,T) <2 (13)

where E denotes the average value and @, R, S and T denote observable.
The main conclusions and their proofs are given below:

Conclusion 1 The local part of the joint probability derived from QF satisfies
the CHSH inequality, which belongs to the local hidden variables theory.
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Proof. Let E(a,b) = {(ab)c, i.e. Eq. (11), the simple formula transformation and
the absolute value inequality can prove that the CHSH inequality holds, i.e.

(QS)ic + (RS)ie + (RT)ie — (QT )| < 2. (14)
It indicates that p;. is a classical probability.

Conclusion 2 The non-local part (quantum interference term) of the joint prob-
ability derived from QE does not satisfy the CHSH inequality, which belongs to
the quantum mechanics theory.

Proof. Let E(a,b) = (ab)p., i.e. Eq. (12), we use a counterexample to prove
that the non-local part can violate the CHSH inequality. For example, when
9Q:9R:95:9T:g,d)Q:%,(bR:ngS:%,QST:O,ﬁ:%andn:O,then

(QS)nic + (RS)nic + (RT)nie — (QT ) nie| = 2.232 £ 2. (15)
It indicates that p,;. is a quantum probability.

Conclusion 3 The joint probability derived from QFE does not satisfy the CHSH
inequality, which belongs to the quantum mechanics theory.

Proof. Let E(a,b) = {(ab)qy = (ab);. + (ab)n;., the CHSH inequality can also be
violated. For example, when g = 0, g = I, 05 = 2%, 0p = T, ¢g = ¢p =
¢s = ¢r =0, =7 and n = 0, then

{QS)arr + (RS)au + (RTYan — (QT)au| = 2V2 £ 2. (16)

It indicates that p,; = pic + Pric is a quantum probability.

2.3 Analysis

Almost all books on quantum mechanics have discussions about the double-slit
experiment, that is, electrons passing through two open slits. See also Ref. [13].
Let Aj denote an event of passing through the slit with label k, here k& = 1, 2.
Interpretation of the results of this experiment has led to the following formula
for the probability:

(A1 U Az) = p(A1) + p(A2) + 2/ p(A1)p(As2) cos(0) (17)

where p is a symbol of probability and # is a certain parameter. Generally,
24/p(A1)p(Az) cos(h) is interpreted as the self-interference inherent to the wave
nature of an electron. It will be convenient to give another form to Eq. (17). Set
C = A;UAs where A;N Ay = () and rewrite Eq. (17) as a nonclassical (quantum)
total probability formula:

p(C) = p(C|A1)p(A1) + p(C|A2)p(A2) (18)
+21/p(C|A1)p(A1)p(C|A2)p(Asz) cos(6). (19)
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where, as usual, p(C|A4;) = p(CAyk)/p(Ax) and p(A) >0, k=1,2.

Based on the quantum total probability formula, a natural judgment can be
drawn that the quantum effect can be described as a quantum interference term
for classical probability. In this paper, we decompose the quantum joint probabil-
ity derived from QE into the classical probability and the quantum interference
term, that is, we present the specific form of QC (or called strong statistical
correlation) revealed by QE and the way it works, and use the CHSH inequality
to verify its correctness. In the following, we will experimentally verify the role
of this interference term in classical tasks.

3 Implement Classification Algorithm by the Framework

From the analysis of the previous theoretical section, we can get the following
cognition: The essential reason that QC revealed by QE can be stronger than
the classical correlation is that the quantum interference term described by the
phase information is added. In this section, we will construct a classification
algorithm based on the mathematical formalization of QE to verify the validity
of QC revealed by QE in classification tasks.

This section is organized as follows: First, we will describe how to calcu-
late the quantum joint probability between features and categories. Second, we
describe how to use a fully connected layer to learn the parameters in the subsys-
tems of an entangled system, that is, how to construct QECA. Formally, it can
be understood as replacing the output layer of the MLP with the measurement
operation of the entangled state. Finally, the learning method of parameters in
the model is given.

3.1 Calculate Joint Probability between Features and Categories

Entanglement arises from the measurement process of entangled systems (states),
that is, obtaining the quantum joint probability not only requires entangled sys-
tems, but also requires to define the observables of the entangled systems.

We choose the quantum system with the maximum entanglement under two
qubits as the entangled system, e.g., Bell states, and its form is

1 1
V2 V2

The reason for choosing the entangled system of two qubits is that we want to
describe one qubit as the attribute (feature) and the other as the label (category).
It can be seen that if there are N attributes in each instance (sample), N Bell
states are needed. Since there are only two eigenvalues in each set of orthogonal
bases of a qubit, it is suitable for binary classification tasks. Of course, one can
achieve multi-class classification tasks by adding the number of qubits of the
label, but this is not the focus of this paper. Moreover, from the form of the
quantum interference term, the probability amplitude and phase information of
the entangled system can be fully reflected by the polar and azimuth angles

) (10) @10) + 1) @[1)) = —=(|00) + [11)) . (20)
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of the measurement operator. In order to reduce the number of parameters of
QECA, we choose the maximum entangled state, i.e., Bell states, to represent
the entangled system.

We define the observable of the subsystem of the entangled system as Eq. (4),
and the spectral decomposition of the observable is

Mr(9r7¢r) = Pf(@r,gbr) - Pr_(eh(br) = H‘T)("Hl - |_r><_r| (21>

with

|4+,) = cos (927") |0) 4 €% sin (Z’“) 1) (22)

o) =sin () 10y = e cos (5 ) 1) (23)

where the polar and azimuth angles, 6,. and ¢,., are the arbitrary real parameters.
For the measurement operator of the attribute, P,;;, we use ¢, to represent the
parameter value of the attribute, and 6, to represent the degree of freedom of
the attribute, e.g., weight. For the measurement operator of the label, Py, we
use the determined measurement operator to represent the label, e.g., 01 = 5
and ¢yqp = 0,
pt =2 - _1

lab = 5(01+00), Py = 5 (01 = 00). (24)

In fact, any set of eigenstates can be chosen to represent the label, only to
satisfy the orthogonality. The reason why we select a set of orthogonal bases to
represent the label is that the positive and negative examples (samples) of the
two-class classification task are (often) binary opposition.

Now we can formally define the measurement operator of the entangled sys-
tem, i.e., Eq. (20). Assuming that each instance (sample) has N attributes and
one label, the positive and the negative measurement operators for the entangled
system consists of the n-th attribute and the label are

PTjY,:(en7 (bn) = P;(em ¢n) ® Plja:b' (25)

P can also be replaced by P, the effect is the same. Applying P, and P,
separately to each entangled system, i.e., Eq. (20), the probability values of both
positive and negative examples will be obtained,

Prx Oy $n) = Tr[Py (6, 60) () (P ))] = (| Py (B, 60) ). (26)
Based on this formal framework, we can calculate the quantum joint proba-
bility between the label and any attribute, and then construct QECA.
3.2 Constructing QECA by Quantum Joint Probability

In QECA, we use a fully connected layer to learn the parameters of the obser-
vations of the entanglement system. Formally, it can be understood as replacing
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O----m- > Theinput of y* and y neurons

/‘\ . Zq:W;p;(ehaRelu(ah +b,))

w
O
q
> The input of the h-th neuron

Inputlayer () s ()

Output Layer

Hidden Layer

Fig. 1. Schematic diagram of QECA.

the output layer of the MLP with a measurement operation of the entangled
system. To make it easier for readers to understand the structure of QECA, we
use the illustrated method to give the architecture of QECA, see Fig. 1.

We perform weighting summation on the attributes of each instance, € R?,
to get the input of the hidden layer neurons, which is aj = Z?Zl V;nx; Where
v, € RY represents the weight. oy, plus the bias b, € R, and then apply the
activation function ReLU (Rectified Linear Unit) [10] to get the parameters of
the measurement operator of the entangled system, which is

on = ReLU(ah + bh) (27)

Together with the defined degrees of freedom, 6}, € R, the measurement operator
of the entangled system can be obtained, which is P,%(eh, on), i-e., Eq. (25). By
applying this measurement operator to the entangled state, i.e., Eq. (20), the
joint probability value of the entangled state, i.e., Eq. (26), can be obtained.

Finally, perform weighting summation on p,jf (0n, dn) to get the final output
value

q
+ +
vt =5 =Y wiipi (On, én) (28)
h=1
where w* € RY represents the weight. 3% represent the input value of the output
layer neurons, as shown in Fig. 1.

3.3 Parameter Learning

Machine learning uses the loss function to improve the performance of the model.
This process of improvement is called optimization. QECA uses the classical
cross-entropy loss function to act on its loss function. Since Adaptive Moment
Estimation (Adam) defines a clear range of learning rates per iteration, making
the parameters change smoothly, we use Adam as the optimizer for QECA.
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4 Experiments

4.1 Datasets and Evaluation Metrics

The experiments were conducted on the four most frequently used machine learn-
ing datasets from UCI [5]. Due to the simulation of complex quantum operations
on classical computers, limited by the computing power of classical computers,
we can only verify our algorithms with lightweight datasets.

Abalone® is a dataset that predicts the age of abalone through physical
measurements. Since QECA is verified under a two-class task, it is divided into
an adult group (covering age > 10) and adolescent group (covering age < 10).
The purpose of this division is to make the amount of data in the two groups as
close as possible.

Car Evaluation® is a dataset that categorizes the car by a few simple indica-
tors. We reclassified the original four categories into two, unacceptable (covering
unacc) and acceptable (covering ace, good and vgood).

Wine Quality'® is a dataset that scores on wine quality. We divide the
scores less than or equal to 5 into one class, and the others into another.

Breast Cancer!! is a dataset that is diagnosed by the patient’s physiological
indicators, which is a two-class dataset.

All experiments use the 5-fold Cross-Validation method to divide the training
set and test set. The experimental evaluation metrics, F1-score, ACC (Accuracy)
and AUC (Area Under Curve), are taken as the average of 5 results.

4.2 Compared with Classical Classification Algorithms

Baselines: QECA is built on the basis of the standard MLP. Compared with
the MLP of the same structure and setting, it can truly reflect the superiority
of QECA. Both QECA and MLP uses an architecture of a single hidden layer,
in order to compare them in a fair manner (or less interference). The number
of neurons in the input layer is equal to the number of attributes; the number
of neurons in the hidden layer is twice the number of input layers; because it is
a binary classification task, the number of neurons in the output layer is two.
Both use the cross-entropy loss function to evaluate the model and the optimizer
Adam to optimize the parameters.

We also conduct a comprehensive comparison across a wide range of machine
learning algorithms, including Logistic Regressive (LR), Decision Tree (DT),
Naive Bayesian Model (NBM), K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), Gradient Boosting Decision Tree (GBDT) and Ada Boosting
Decision Tree (ABDT).

8 http://archive.ics.uci.edu/ml/datasets/Abalone
9 http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
10 http://archive.ics.uci.edu/ml/datasets/ Wine-+Quality
' http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin-+(original)
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Table 1. Experiment Results: the best-performed values for each dataset are in bold.

Dataset | Abalone | WQ (Red) | Car Evaluation | Breast Cancer

Algorithm|F1-score ACC AUC |Fl-score ACC AUC |Fl-score ACC AUC |Fl-score ACC AUC

LR 0.7704 0.7708 0.7708 | 0.7559 0.7410 0.7404| 0.7582 0.8611 0.8224| 0.9494 0.9648 0.9594
DT 0.7153 0.7170 0.7170| 0.7340 0.7191 0.7187 | 0.9626 0.9774 0.9756 | 0.8957 0.9298 0.9151
NBM 0.7387 0.7345 0.7345| 0.7451 0.7298 0.7292| 0.8519 0.9062 0.9043 | 0.9450 0.9604 0.9628
KNN 0.7791 0.7842 0.7842| 0.6682 0.6447 0.6428 | 0.9422 0.9670 0.9477 | 0.9493 0.9648 0.9593
SVM 0.7678 0.7541 0.7543| 0.7299 0.7110 0.7095| 0.9565 0.9733 0.9732 | 0.9444 0.9589 0.9655
LDA 0.7443 0.7603 0.7601| 0.7566 0.7273 0.7224| 0.7698 0.8657 0.8323 | 0.9422 0.9605 0.9513
QDA 0.7390 0.7560 0.7558 | 0.7532 0.7204 0.7146 | 0.8500 0.9161 0.8816 | 0.9344 0.9516 0.9570
MLP 0.7896 0.7864 0.7865| 0.7361 0.7373 0.7412| 0.9384 0.9629 0.9564 | 0.8980 0.9280 0.9214
GBDT 0.7880 0.7859 0.7860| 0.7609 0.7467 0.7460| 0.9316 0.9571 0.9616 | 0.9279 0.9471 0.9477
ABDT 0.7884 0.7842 0.7843| 0.7536 0.7335 0.7312| 0.9155 0.9490 0.9409 | 0.9301 0.9517 0.9445
QECA 0.8018 0.8027 0.8027| 0.7633 0.7536 0.7544| 0.9759 0.9855 0.9841| 0.9630 0.9736 0.9758

over MLP | 1.54%1 2.07%7T 2.05%1| 3.69%1T 2.21%71 1.78%1| 3.99%1T 2.34%1T 2.89%1| 7.23%1T 4.91%71 5.90%71

Parameter Settings: QECA has three hyper-parameters, which are learning
rate, mini-batch and training epoch, respectively, and uses the same settings on
all datasets: the learning rate is 0.0001, the mini-batch is 1 and the training
epoch is 500. Their weights are initialized to a truncated positive distribution,
and the biases to 0.01. The permutation and combination method is used to
select the hyper-parameters.

The hyper-parameters in the baselines are set to: in LR, penalty is L2; in
DT, min-samples-split is 10; in SVM, C' is 1.0 and kernel is rbf; in KNN, n-
neighbors is 10; in LDA, solver is svd and store-covariance is True; in QDA,
store-covariance is True; in MLP, activation is relu and solver is adam; in
GBDT, n-estimators is 20; in ABDT, n-estimators is 20. Other hyper-parameters

not listed use the default value of the framework scikit-learn!?2.

Experiment Results: Inspired by the quantum double-slit experiment, we also
use the quantum interference term to characterize the strong statistical correla-
tion revealed by QE and design an algorithm to verify the role of the quantum
interference term in the classification task. Tab. 1 presents the experiment re-
sults under Abalone, Breast Cancer, Wine Quality (Red) and Car Evaluation
respectively, where bold values are the best performances out of all algorithms.
From the experimental results, the most metrics of QECA on four datasets are
significantly better than the majority of machine learning algorithms. The basic
conclusion that QECA has excellent classification ability can be drawn. This
proves the effectiveness of QECA from a holistic perspective.

Moreover, the comparison with the MLP can explain that QECA is im-
proved on the basis of MLP, and it shows that the quantum interference term
plays an important role on QECA, that is, the quantum interference term de-
scribed by the quantum phase has learned a strong statistical correlation be-
tween attributes and labels. Below we will analyze the entire learning process
to determine whether the learning (or classification) ability is stable rather than
accidental.

2 https://scikit-learn.org/stable/index.html
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4.3 Comparison with the Training Process of Standard MLP

In order to analyze QECA’s learning ability in more detail, we compared the
training process of QECA with the baseline method MLP. We use the validation
set divided by the 5-fold Cross-Validation method as the test set to obtain the
accuracy curve during the training process. The hyper-parameter settings of both
QECA and MLP are exactly the same as those in Experiment 4.2. We selected
three representative datasets for experiments: Wine Quality (Red) and Wine
Quality (White) have the same data structure, but the amount of data in Wine
Quality (Red) is balanced and Wine Quality (White) is not balanced; Moreover,
in order to illustrate the effect of the number of attributes on the training effect,
we use Abalone to compare with Wine Quality.

The experiment results are shown in Fig. 2. From the accuracy curve of
the training process under the three datasets, compared with the MLP, QECA
has significant improvement and its contribution is obvious. The experimental
results of this section can prove that the quantum interference term plays an
important role in QECA. It also further shows that QC revealed by QE can play
an important role in the classic classification task.

Wine Quality (Red) Wine Quality (White) Abalone

Accuracy
o
S
&

—— QECA training curve —— QECA training curve —— QECA training curve
0.55 —— MLP training curve —— MLP training curve 0.60 —— MLP training curve

Wine Quality (Red) Wine Quality (White) Abalone

Accuracy
o o

—— QECA test curve 0.68 —— QECA test curve —— QECA test curve
—— MLP test curve —— MLP test curve 0.60 4 —— MLP test curve

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Training Epochs Training Epochs Training Epochs

Fig. 2. Experiment Results: The left column is the accuracy curve on the training set,
and the right column on the test set.

5 Conclusion and Future Work

In this paper, we propose a novel classification framework, called Quantum En-
tanglement inspired the Classification Algorithm (QECA), to learn a strong
statistical correlation (i.e., QC) between features and categories and leverage it
to improve the classification performance by integrating QC into MLP. QECA
achieved excellent results on the four machine learning datasets compared with
the baseline method MLP, which only uses the statistical correlation described
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by classical theory. More importantly, QECA also outperforms the other com-
petitive methods in most metric. These results prove the effectiveness of QC in
classification tasks.
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